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Άσκηση 5.1 Εξετάστε ποιά από τα παρακάτω σύνολα είναι υπόχωροι του αντίστοιχου διανυσματικού
χώρου.

a. {(x, y, z) ∈ R3 : 2x− y = 0},

b. {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ R2,

c. {(x, y) ∈ R2 : xy = 1},

d. {(x, y, z) ∈ R3 : x+ y + z ≥ 0},

e. {(x, y, z) ∈ R3 : x = 0},

f. {x(1, 22, 0) + y(1, 2, 3) : x, y ∈ R},

g. {(x, y, z) ∈ R3 : x = y = z},

h. {(x, y) ∈ R2 : x2 = y2}.

Απάντηση: Υπόχωροι είναι τα σύνολα a,e,f,g. Μπορεί να το δείξει κανείς με το κριτήριο του υπόχωρου.
Στο b περιέχονται τα (1, 0), (1, 1) αλλά δεν περιέχεται το (1, 0)+ (1, 1). Στο c περιέχεται το (1, 1), αλλά
όχι το 2 · (1, 1). Στο c περιέχεται το (1, 1, 1), αλλά όχι το−(1, 1, 1). Στο h περιέχονται τα (1, 1), (1,−1),
αλλά δεν περιέχεται το (1, 1) + (1,−1).

Άσκηση 5.2 Έστω V διανυσματικός χώρος καιU ⊆ V . Δείξτε ότι οU είναι υπόχωρος του V αν και μόνο
αν U = ⟨U⟩.

Απάντηση: Ας υποθέσουμε ότι οU είναι υπόχωρος τουV . Το τυχόν στοιχείο του ⟨U⟩ είναι της μορφής
v =

∑n
i=1 λiui, με ui ∈ U . Καθώς ο U είναι υπόχωρος του V , είναι κλειστός ως προς τις πράξεις, οπότε

v ∈ U . Άρα ⟨U⟩ ⊆ U . Ο αντίστροφος εγκλεισμός, U ⊆ ⟨U⟩, ισχύει για κάθε υποσύνολο του V . Οπότε
U = ⟨U⟩.
Αντίστροφα, ας υποθέσουμε ότι U = ⟨U⟩. Τότε ο U είναι υπόχωρος του V (αφού είναι ίσος με τον ⟨U⟩,
ο οποίος γνωρίζουμε ότι είναι υπόχωρος).

Άσκηση 5.3 Εξετάστε ποιά από τα διανύσματα (1, 1, 1, 1), (1,−1, 1,−1), (0, 1, 0, 1), (1, 0, 1, 0) ανήκουν
στον υπόχωρο τουR4 που παράγουν τα διανύσματα v1 = (1,−1, 0, 0), v2 = (0, 1, 1, 2), v3 = (1, 0, 1, 1).
Για όποιο διάνυσμα ανήκει, γράψτε το ως γραμμικό συνδυασμό των v1, v2, v3.

Απάντηση: Για κάθε ένα από τα διανύσματαw1 = (1, 1, 1, 1), w2 = (1,−1, 1,−1), w3 = (0, 1, 0, 1), w4 =
(1, 0, 1, 0) πρέπει να ελέγξω εάν υπάρχουν πραγματικοί αριθμοί x, y, z τέτοιοι ώστε
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Ισοδύναμα θέλω να ελέγξω εάν καθένα από τα παρακάτω συστήματα έχει λύση
1 0 1

−1 1 0
0 1 1
0 2 1


 x

y
z

 = wi

Μπορούμε να κάνουμε απαλοιφή Gauss, λύνοντας και τα τρία συστήματα συγχρόνως (αφού και τα τρία
έχουν τον ίδιο πίνακα).

1 0 1 1 1 0 1
−1 1 0 1 −1 1 0
0 1 1 1 1 0 1
0 2 1 1 −1 1 0

 →


1 0 1 1 1 0 1
0 1 1 2 0 1 1
0 1 1 1 1 0 1
0 2 1 1 −1 1 0

 →


1 0 1 1 1 0 1
0 1 1 2 0 1 1
0 0 0 −1 1 −1 0
0 0 −1 −3 −1 −1 −2

 →


1 0 1 1 1 0 1
0 1 1 2 0 1 1
0 0 −1 −3 −1 −1 −2
0 0 0 −1 1 −1 0


Βλέπουμε ότι ο κλιμακωτός πίνακας στον οποίο καταλήγουμε, έχει μία μηδενική γραμμή. Μόνο ένα από
τα τέσσερα συστήματα έχει 0 στο δεξί μέλος, οπότε μόνο αυτό το σύστημα έχει λύση (τα υπόλοιπα είναι
αδύνατα). Άρα μόνο το διάνυσμα (1, 0, 1, 0) ανήκει στον υπόχωρο ⟨v1, v2, v3⟩.

Άσκηση 5.4 Δίνεται ο πίνακας

A =

 1 2 0 1
−1 −1 1 −2
−2 −5 −1 −1

 .

Εξετάστε εάν το διάνυσμα (1,−2,−1) ανήκει στο χώρο, R(A), που παράγουν οι στήλες του A. Βρείτε
ένα διάνυσμα του R3 το οποίο δεν ανήκει στο χώρο στηλών του A.

Απάντηση: Γενικά, το διάνυσμα (a, b, c) ανήκει στο χώρο R(A) αν υπάρχουν πραγματικοί αριθμοί
x1, x2, x3, x4 τέτοιοι ώστε
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Ισοδύναμα,  1 2 0 1
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
Λύνουμε το σύστημα με απαλοιφή Gauss. 1 2 0 1 a

−1 −1 1 −2 b
−2 −5 −1 −1 c

 → · · · →

 1 2 0 1 a
0 1 1 −1 a+ b
0 0 0 0 3a+ b+ c


Βλέπουμε ότι το σύστημα έχει λύση αν και μόνο αν 3a+ b+ c = 0. Ειδικότερα, το διάνυσμα (1,−2,−1)
ικανοποιεί αυτή τη συνθήκη και άρα ανήκει στονR(A). Το διάνυσμα (1, 1, 1) δεν την ικανοποιεί και άρα
δεν ανήκει.

Άσκηση 5.5 Δίνεται ο πίνακας

A =

 1 2 0 1
−1 −1 1 −2
1 3 1 0

 .

2



Βρείτε διανύσματα του R4 τα οποία παράγουν το χώρο,N (A), των λύσεων του συστήματος Ax = 0.

Απάντηση: Λύνουμε το συστημα Ax = 0 με απαλοιφή Gauss. 1 2 0 1
−1 −1 1 −2
1 3 1 0

 → · · · →

 1 2 0 1
0 1 1 −1
0 0 0 0


Οι ελεύθερες μεταβλητές είναι οι x3, x4. Κάνουμε ανάδρομη αντικατάσταση{

x1 = −2x2 − x4
x2 = −x3 + x4

}
⇔

{
x1 = 2x3 − 3x4
x2 = −x3 + x4

}
Άρα οι λύσεις του συστήματος είναι

{(2x3 − 3x4,−x3 + x4, x3, x4) : x3, x4 ∈ R} = {x3(2,−1, 1, 0) + x4(−3, 1, 0, 1) : x3, x4 ∈ R}
= ⟨(2,−1, 1, 0), (−3, 1, 0, 1)⟩

Άσκηση 5.6 Έστω v1 = (1, 1, 1), v2 = (1,−1,−1), v3 = (3, 1, 1). Δείξτε ότι (a, b, c) ∈ ⟨v1, v2, v3⟩ αν
και μόνο αν b = c. Γράψτε το διάνυσμα (1, 3, 3) με δύο τρόπους ως γραμμικό συνδυασμό των v1, v2, v3.

Απάντηση: Τοδιάνυσμα (a, b, c)ανήκει στον υπόχωρο ⟨v1, v2, v3⟩αν και μόνοαν υπάρχουνπραγματικοί
αριθμοί x1, x2, x3 τέτοιοι ώστε x1v1 + x2v2 + x3v3 = (a, b, c). Ισοδύναμα, αν το σύστημα 1 1 3

1 −1 1
1 −1 1

 x1
x2
x3

 =

 a
b
c


έχει λύση. Λύνουμε το σύστημα με απαλοιφή Gauss. 1 1 3 a

1 −1 1 b
1 −1 1 c

 → · · · →

 1 1 3 a
0 −2 −2 b− a
0 0 0 c− b


Ο κλιμακωτός πίνακας έχει μία μηδενική γραμμή. Το σύστημα έχει λύση αν και μόνο αν το δεξί μέλος
είναι ίσο με 0, δηλαδή αν και μόνο αν b = c. Σε αυτή την περίπτωση έχουμε ισοδύναμα{

x1 = a− x2 − 3x3
−2x2 = b− a+ 2x3

}
⇔

{
x1 = a+b

2 − 2x3
x2 = a−b

2 − x3

}
Ειδικότερα, για το διάνυσμα (a, b, c) = (1, 3, 3), οι λύσεις του συστήματος είναι οι

{(2− 2x3,−1− x3, x3) : x3 ∈ R} = {(2,−1, 0) + x3(−2,−1, 1) : x3 ∈ R}

Δύολύσεις του συστήματος είναι οι (2,−1, 0) και (0,−2, 1)που μου δίνουν και τους αντίστοιχους γραμμικούς
συνδυασμούς

(1, 3, 3) = 2v1 − v2 = −2v2 + v3

Άσκηση 5.7 Δείξτε ότι δεν υπάρχουν διανύσματα v1, v2 ∈ R3 τέτοια ώστε ⟨v1, v2⟩ = R3. Γενικεύστε το
επιχείρημα σας για διανύσματα v1, . . . , vn−1 ∈ Rn.

Απάντηση: θα δείξουμε την πρόταση για το τυχόν n ≥ 2. Ας υποθέσουμε ότι υπάρχουν διανύσματα
v1, . . . , vn−1 ∈ Rn τέτοια ώστε ⟨v1, . . . , vn−1⟩ = Rn. Τότε κάθε διάνυσμα b = (a1, . . . , an) ∈ Rn

γράφεται ως γραμμικός συνδυασμός των v1, . . . , vn−1, δηλαδή υπάρχουν x1, . . . , xn−1 ∈ R τέτοιοι ώστε

x1v1 + · · ·+ xn−1vn−1 = b
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Ισοδύναμα το σύστημαAx = b έχει λύση, όπουA ∈ Matn×(n−1)(R) είναι ο πίνακας που έχει για στήλες
τα διανύσματα v1, . . . , vn−1. Η απαλοιφή Gauss στον πίνακα A θα οδηγήσει σε ένα κλιμακωτό πίνακα
U με n γραμμές και n − 1 στήλες. Καθώς ο πίνακας μπορεί να έχει το πολύ n − 1 οδηγούς και κάθε μη
μηδενική γραμμή έχει οδηγό, ο πίνακαςU θα έχει τουλάχιστον μία μηδενική γραμμή. Στο δεξί μέλος αυτής
της γραμμής θα έχουμε ένα γραμμικό συνδυασμό των a1, . . . , an, ας πούμε τον

∑n
i=1 ciai, με ci ∈ R, για

1 ≤ i ≤ n. Παρατηρήστε ότι τα ci εξαρτώνται αποκλειστικά από τον πίνακα A, όχι από το διάνυσμα
b = (a1, . . . , an) και δεν είναι όλα ίσα με 0.

[ Ένας τρόπος για το δει κανείς αυτό είναι από την ανάλυση LU. Εάν PA = LU , τότε

Ax = b ⇔ P−1LUx = b ⇔ Ux = L−1Pb

Οι λύσεις του αρχικού συστήματος Ax = b είναι ακριβώς αυτές του συστήματος Ux = L−1Pb. Εάν η
n γραμμή του πίνακα U είναι μηδενική, το δεξί μέλος είναι ίσο με

∑n
i=1 ciai, όπου b = (a1, . . . , an) και

(c1, . . . , cn) είναι η τελευταία γραμμή του L−1P . Ο τελευταίος πίνακας είναι αντιστρέψιμος, οπότε δε
μπορεί να έχει μηδενική γραμμή.]

Η μηδενική γραμμή του U έχει
∑n

i=1 ciai στο δεύτερο μέλος και κάποιο ci, ας πούμε το ci0 ̸= 0.
Πάρτε τότε b = ei0 και δείτε ότι το δεύτερο μέλος της μηδενικής γραμμής είναι ίσο με ci0 ̸= 0. Άρα
ei0 ̸∈ ⟨v1, . . . , vn−1⟩.

Άσκηση 5.8 Έστω A ∈ Matm×n(R) και B ∈ Matn×p(R). Συμβολίζουμε μεN (A) το χώρο λύσεων του
συστήματος Ax = 0 και μεR(B) το χώρο που παράγουν οι στήλες τουB.

a. Δείξτε ότι
AB = O ⇐⇒ R(B) ⊆ N (A).

b. Εάν

A =

 1 0 1
1 2 −1

−1 −2 1


βρείτε μη μηδενικό 3× 3 πίνακαB τέτοιο ώστε AB = O.

Απάντηση: Για το (a), παρατηρήστε ότι η συνθήκηAB = O είναι ισοδύναμη με τις συνθήκεςAbj = 0
για 1 ≤ j ≤ p, όπου bj είναι οι στήλες του πίνακα B. Ας υποθέσουμε ότι AB = O. Αυτό σημαίνει ότι
Abj = 0 για κάθε 1 ≤ j ≤ p. Έστω v ∈ R(B). Τότε v =

∑p
j=1 λjbj για κάποια λj ∈ R. Έχουμε

Av = A

p∑
j=1

λjbj =

p∑
j=1

λjAbj = 0

Άρα v ∈ N (A).
Aντίστροφα, ας υποθέσουμε ότιR(B) ⊆ N (A). Τότε για κάθε διάνυσμα v ∈ R(B) ισχύει v ∈ N (A)

δηλαδή Av = 0. Παρατηρήστε ότι bj ∈ R(A) για 1 ≤ j ≤ p, οπότε Abj = 0 για 1 ≤ j ≤ p.
Για το (b), αφού θέλω ένα πίνακα BMat3(R) ο οποίος να ικανοποιεί AB = O, από το ερώτημα (a)

θα πρέπει να ικανοποιείR(B) ⊆ N (A). Θα βρώ τρία διανύσματα στοN (A) και θα τα ορίσω ως στήλες
τουB.  1 0 1

1 2 −1
−1 −2 1

 → · · · →

 1 0 1
0 2 −2
0 0 0


ΆραN (A) = {z(−1, 1, 1) : z ∈ R}. Ένας πίνακας που ικανοποιεί τη συνθήκη AB = O είναι ο

B =

 −1 −1 1
1 1 −1
1 1 −1


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Άσκηση 5.9 Έστω v1, . . . , vn ∈ Rn τέτοια ώστε ⟨v1, . . . , vn⟩ = Rn. Έστω B ∈ Matn(R) ο πίνακας με
στήλες τα διανύσματα v1, . . . , vn. Θα δείξουμε ότι ο B είναι αντιστρέψιμος.

a. Δείξτε ότι υπάρχουν πραγματικοί αριθμοί ai,j , 1 ≤ i, j ≤ n τέτοιοι ώστε ej =
∑n

i=1 ai,jvi, για
κάθε 1 ≤ j ≤ n.

b. Δείξτε ότι

B ·

 a1,j
...

an,j

 = ej , για κάθε 1 ≤ j ≤ n.

c. Δείξτε ότι ο πίνακαςB είναι αντιστρέψιμος και βρείτε τον αντίστροφό του.

Απάντηση: Για το (a), βλέπουμε ότι ej ∈ Rn = ⟨v1, . . . , vn⟩ για 1 ≤ j ≤ n, οπότε κάθε ej γράφεται
ως γραμμικός συνδυασμός των v1, . . . , vn. Άρα υπάρχουν πραγμτικοί αριθμοί ai,j , 1 ≤ i, j ≤ n τέτοιοι
ώστε

ej =
n∑

i=1

ai,jvi, για 1 ≤ j ≤ n

Για το (b), παρατηρούμε ότι
n∑

i=1

ai,jvi = B

 a1,j
...

an,j


όπουB είναι ο πίνακας με στήλες τα v1, . . . , vn (με αυτή τη σειρά).

Για το (c), βλέπουμε ότι οι σχέσεις

B ·

 a1,j
...

an,j

 = ej , για κάθε 1 ≤ j ≤ n.

που δείξαμε ότι ισχύουν είναι ισοδύναμες με τη σχέση BA = I , όπου A = (ai,j) και I είναι ο n × n
ταυτοτικός πίνακας. Από την τελευταία σχέση βλέπουμε ότι ο B είναι αντιστρέψιμος καιB−1 = A.
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