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1 Αρχή του Περιστερώνα

Ορισμός 1.1 (Πληθικός αριθμός). Ένα σύνολο S λέγεται πεπερασμένο αν υπάρχει m ∈ N και
f : S → {1, . . . ,m} η οποία είναι 1-1 και επί. Ο m λέγεται πληθάριθμος του S και θα τον
συμβολίζομυε με #S ή |S|.
Πρόταση 1.2. Έστω f : A → B, όπου A,B πεπερασμένα σύνολα.

a) Αν η f είναι 1-1, τότε #A ≤ #B.

b) Αν η f είναι επί, τότε #A ≥ #B.

Πόρισμα 1.3 (Αρχή Περιστερώνα ). Αν f : A → B και #A > #B, τότε η f δεν είναι 1-1. Άρα
υπάρχουν x1, x2 ∈ A με x1 ̸= x2 τέτοια ώστε f(x1) = f(x2).

Γενικότερα, ισχύει το παρακάτω.

Πρόταση 1.4. Έστω n,m, r θετικοί ακέραιοι με n > rm. Αν βάλουμε n μπάλες σε m κουτιά,
τότε υπάρχει τουλάχιστον ένα κουτί με τουλάχιστον r + 1 μπάλες.

Εφαρμογή 1. Μεταξύ m+ 1 ακεραίων, υπάρχουν δύο που η διαφορά τους διαιρείται με m.

Απόδειξη. Έστω A = {a1, a2, . . . , am+1} το σύνολο των ακεραίων. Θεωρούμε τα υπόλοιπα της
διαίρεσης του κάθε αριθμού με το m. Τα δυνατά υπόλοιπα είναι το σύνολο B = {0, 1, . . . ,m−1}.
Επειδή το πλήθος των αριθμών (m+1) είναι μεγαλύτερο από το πλήθος των δυνατών υπολοίπων
(m), από την Αρχή του Περιστερώνα υπάρχουν τουλάχιστον δύο αριθμοί ai, aj που έχουν το ίδιο
υπόλοιπο. Συνεπώς, ai ≡ aj (mod m) ⇒ ai − aj = k · m, άρα η διαφορά τους διαιρείται με
το m.

Εφαρμογή 2. Σε μια συνάντηση m ατόμων, υπάρχουν δύο άτομα με το ίδιο πλήθος γνωστών.

Απόδειξη. Έστω m άτομα. Ο αριθμός των γνωστών για κάθε άτομο μπορεί να είναι από 0 έως
m − 1. Παρατηρούμε ότι δεν γίνεται να υπάρχει ταυτόχρονα άτομο με 0 γνωστούς και άτομο
με m − 1 γνωστούς (αν κάποιος ξέρει όλους, δεν γίνεται κάποιος να μην ξέρει κανέναν). Άρα,
οι δυνατές τιμές για το πλήθος των γνωστών είναι είτε {0, 1, . . . ,m − 2} είτε {1, 2, . . . ,m − 1}.
Σε κάθε περίπτωση, έχουμε m άτομα (περιστέρια) και m − 1 δυνατές τιμές πλήθους γνωστών
(φωλιές). Από την Αρχή του Περιστερώνα, τουλάχιστον δύο άτομα θα έχουν το ίδιο πλήθος
γνωστών.

Εφαρμογή 3. Δίνονται 10 σημεία στο εσωτερικό τετραγώνου πλευράς 1. Τότε υπάρχουν δύο
από αυτά σε απόσταση μικρότερη από 0, 48. Επιπλέον, υπάρχουν 3 από αυτά που μπορούν
να καλυφθούν από δίσκο ακτίνας 1

2 .

Απόδειξη. Για την απόσταση: Χωρίζουμε το τετράγωνο πλευράς 1 σε 3× 3 = 9 ίσα μικρότερα
τετράγωνα πλευράς 1/3. Επειδή έχουμε 10 σημεία και 9 τετραγωνάκια, από την Αρχή του Πε-
ριστερώνα, τουλάχιστον 2 σημεία θα βρεθούν στο ίδιο μικρό τετράγωνο. Η μέγιστη απόσταση
(διαγώνιος) μέσα στο μικρό τετράγωνο είναι:
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Σχήμα: 10 σημεία σε 9 τετράγωνα. Ένα κουτί έχει κόκκινο χρώμα και περιέχει 2 σημεία.

Για τον δίσκο ακτίνας 1/2: Ο δίσκος ακτίνας 1/2 έχει διάμετρο 1. Ένα τετράγωνο πλευράς 1
μπορεί να καλυφθεί οριακά από κύκλο διαμέτρου

√
2 ≈ 1.41, οπότε χρειάζεται προσοχή στη

διατύπωση. Ωστόσο, μια πιο απλή προσέγγιση για το δεύτερο σκέλος (κάλυψη 3 σημείων). Αν
χωρίσουμε το τετράγωνο σε 4 ίσα τετράγωνα πλευράς 1/2, τότε με 10 σημεία, από την γενικευ-
μένη Αρχή Περιστερώνα (⌈10/4⌉ = 3), θα υπάρχουν τουλάχιστον 3 σημεία στο ίδιο τετράγωνο
πλευράς 1/2.

Δίσκος R = 1/2

Χωρίζοντας σε 4 κουτιά, με 10 σημεία,
τουλάχιστον ένα έχει ⌈10/4⌉ = 3 σημεία.

Ένα τετράγωνο πλευράς 1/2 έχει διαγώνιο
√
2/2 ≈ 0.707, άρα καλύπτεται άνετα από δίσκο

ακτίνας 1/2 (που έχει διάμετρο 1).

Εφαρμογή 4. Τα τελευταία 1000 χρόνια, καθένας μας είχε έναν πρόγονο A, ώστε υπάρχει
άτομο P που ήταν πρόγονος και του πατέρα και της μητέρας του A.

Απόδειξη. Υποθέτουμε ότι μια γενιά είναι περίπου 30 χρόνια, άρα σε 1000 χρόνια έχουμε περί-
που 33 γενιές. Αν όλοι οι πρόγονοι ήταν διαφορετικοί, πριν από n γενιές θα είχαμε 2n προγόνους.
Για n = 33, 233 ≈ 8.5 δισεκατομμύρια, αριθμός που υπερβαίνει τον πληθυσμό της Γης εκείνη την
εποχή (και σίγουρα τον πληθυσμό της περιοχής καταγωγής). Άρα, αναγκαστικά υπάρχουν επικα-
λύψεις στο γενεαλογικό δέντρο, δηλαδή άτομα που εμφανίζονται ως πρόγονοι από διαφορετικά
κλαδιά (αιμομιξία σε μακρινό βαθμό).

Εφαρμογή 5. Σε κάθε πεντάγωνο με ακέραιες συντεταγμένες υπάρχει σημείο στο εσωτερικό
του ή στην περίμετρό του με ακέραιες συντεταγμένες.

Απόδειξη. Οι συντεταγμένες (x, y) μιας κορυφής μπορεί να είναι (άρτιος, άρτιος), (άρτιος, πε-
ριττός), (περιττός, άρτιος) ή (περιττός, περιττός). Υπάρχουν δηλαδή 4 δυνατοί συνδυασμοί. Ένα
πεντάγωνο έχει 5 κορυφές. Από την Αρχή του Περιστερώνα, τουλάχιστον δύο κορυφές, έστω
A(x1, y1) και B(x2, y2), έχουν τον ίδιο συνδυασμό. Τότε, τα αθροίσματα x1+x2 και y1+y2 είναι
άρτιοι αριθμοί. Το μέσον M του τμήματος AB έχει συντεταγμένες (x1+x2

2 , y1+y2
2 ), οι οποίες θα

είναι ακέραιοι αριθμοί.

Εφαρμογή 6. Σε κάθε εξάδα ατόμων μπορούμε να βρούμε είτε τριάδα γνωστών είτε τριάδα
αγνώστων.

Απόδειξη. Θεωρούμε ένα άτομο A. Από τα υπόλοιπα 5 άτομα, τουλάχιστον 3 έχουν την ίδια
σχέση με το A (Αρχή Περιστερώνα: 5 αντικείμενα, 2 κουτιά). Έστω ότι το A έχει 3 γνωστούς
(B,Γ,∆).
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Αν μία από τις διακεκομμέ-
νες ήταν μπλε, σχηματίζεται
μπλε τρίγωνο. Αν όλες παρα-
μένουν κόκκινες, σχηματίζεται

κόκκινο τρίγωνο (BΓ∆).

Εφαρμογή 7. Αν πάρουμε 19 αριθμούς από την αριθμητική πρόοδο 1, 4, . . . , 100, υπάρχουν
δύο με άθροισμα 104.

Απόδειξη. Η πρόοδος είναι an = 3n− 2. Το 100 είναι ο 34ος όρος (3 · 34− 2 = 100). Το σύνολο
S έχει 34 στοιχεία. Ζητάμε ζεύγη με άθροισμα 104. Θεωρούμε τα ζεύγη:

{4, 100}, {7, 97}, . . . , {49, 55}.

Γενικά τα ζεύγη είναι της μορφής {k, 104− k}. Επίσης, παρατηρούμε ότι από τους 34 αριθμούς
της προόδου:
- Ο αριθμός 1 δεν έχει ταίρι στο σύνολο (θα ήθελε το 103).
- Ο αριθμός 52 δεν έχει ταίρι (θα ήθελε το 52, αλλά παίρνουμε διακριτούς αριθμούς).
Τα υπόλοιπα 32 νούμερα σχηματίζουν 16 ζεύγη με άθροισμα 104.
Δημιουργούμε τις ”φωλιές” ως εξής: 16 φωλιές για τα ζεύγη, 1 φωλιά για το {1} και 1 φωλιά για το
{52}. Σύνολο 18 φωλιές. Επιλέγουμε 19 αριθμούς (περιστέρια). Από την Αρχή του Περιστερώνα,
θα επιλεγούν αναγκαστικά και οι δύο αριθμοί από τουλάχιστον μία φωλιά ζεύγους (αφού οι
φωλιές των μονών αριθμών χωράνε μόνο 1). Άρα θα έχουμε άθροισμα 104.

2 Βασικές Αρχές Απαρίθμησης

Προσθετική Αρχή

Αν A1, . . . , An πεπερασμένα ξένα ανά δύο, τότε:

#
n⋃

i=1

Ai =
n∑

i=1

#Ai

Πολλαπλασιαστική Αρχή

Έστω ότι μια διαδικασία μπορεί να χωριστεί σε k διαδοχικά στάδια. Αν το 1ο στάδιο μπορεί
να ολοκληρωθεί με n1 τρόπους, το 2ο στάδιο με n2 τρόπους, ..., και το k-οστό στάδιο με nk

τρόπους, τότε το πλήθος των συνολικών τρόπων με τους οποίους μπορεί να πραγματοποιηθεί η
διαδικασία είναι:

N = n1 · n2 · · · · · nk.
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Εφαρμογή 8. Ένα εστιατόριο προσφέρει 3 είδη ορεκτικών, 5 κυρίως πιάτα και 2 επιδόρπια.
Με πόσους τρόπους μπορεί ένας πελάτης να σχηματίσει ένα πλήρες γεύμα;

Απόδειξη. Σύμφωνα με την πολλαπλασιαστική αρχή, έχουμε 3 στάδια επιλογής:

• 1ο στάδιο (Ορεκτικό): n1 = 3 επιλογές

• 2ο στάδιο (Κυρίως): n2 = 5 επιλογές

• 3ο στάδιο (Επιδόρπιο): n3 = 2 επιλογές

Το συνολικό πλήθος των διαφορετικών γευμάτων είναι:

3 · 5 · 2 = 30 τρόποι.

Πρόταση 2.1. Αν A1, A2, . . . , Ak είναι πεπερασμένα σύνολα, τότε ο πληθικός αριθμός του
καρτεσιανού γινομένου τους είναι το γινόμενο των πληθικών τους αριθμών:

#(A1 ×A2 × · · · × Ak) = #A1 · #A2 · · · · · #Ak

Με πόσους τρόπους μπορούν να τοποθετηθούν n όμοια πιόνια σε μια n × n σκακιέρα μη
αλληλεπιδρώμενα (να μην απειλεί το ένα το άλλο, δηλαδή σε διαφορετικές γραμμές και στήλες);
Απάντηση: n!. (Ή n πύργοι).
Ερώτηση: Με πόσους τρόπους μπορούμε να επιλέξουμε ένα μαύρο και ένα άσπρο πιόνι αν δεν
θέλουμε να είναι σε ίδια γραμμή ή στήλη (σε σκακιέρα 8× 8);
Απάντηση: Το πλήθος των αναδιατάξεων είναι n!. Ίδιο με τις μη αλληλεπιδρώμενες.
Συγκεκριμένα για την επιλογή 2 πιονιών: Το πρώτο μπαίνει σε 64 θέσεις. Το δεύτερο έχει απο-
κλειστεί από 1 γραμμή και 1 στήλη (15 θέσεις), άρα 64−15 = 49. 64×49. (Σημείωση: Το κείμενο
αναφέρεται γενικά σε αναδιατάξεις n!, πιθανώς αναφερόμενο στην τοποθέτηση n πύργων).

Σχήμα: Αντιστοιχία πλέγματος με μετάθεση (2, 5, 1, 3, 4).

Άσκηση 1. Θέτουμε
X = {1, 2, . . . , 200}

και ορίζουμε το σύνολο

S = {(a, b, c) ∈ X3 : a < b και a < c}.

Πόσα στοιχεία έχει το S;

Απόδειξη. Η συνθήκη a < b και a < c σημαίνει ότι το a είναι αυστηρά μικρότερο από και το b
και το c. Παρατηρούμε πρώτα ότι δεν μπορεί να είναι a = 200, διότι τότε δεν υπάρχει κανένα
b ∈ X με b > 200, ούτε κανένα c ∈ X με c > 200. Άρα αναγκαστικά

a ∈ {1, 2, . . . , 199}.

Θα διασπάσουμε το S σε ξένα μεταξύ τους υποσύνολα, ανάλογα με την τιμή του a. Για κάθε
k ∈ {1, 2, . . . , 199} ορίζουμε

Ak = {(a, b, c) ∈ S : a = k}.
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Τότε τα Ak είναι ξένα ανά δύο και

S =
199⊔
k=1

Ak =⇒ |S| =
199∑
k=1

|Ak|

(αρχή πρόσθεσης).
Σταθεροποιούμε τώρα το a = k. Τότε η ανισότητα a < b ισοδυναμεί με b ∈ {k + 1, k +

2, . . . , 200}, άρα υπάρχουν 200− k επιλογές για το b. Ομοίως, από a < c έχουμε c ∈ {k+ 1, k+
2, . . . , 200}, άρα υπάρχουν 200 − k επιλογές και για το c. Οι επιλογές του b και του c είναι
ανεξάρτητες (δεν υπάρχει περιορισμός μεταξύ τους· επιτρέπεται ακόμη και b = c), οπότε

|Ak| = (200− k)(200− k) = (200− k)2.

Άρα

|S| =
199∑
k=1

(200− k)2.

Θέτοντας m = 200 − k, όταν k = 1 παίρνουμε m = 199 και όταν k = 199 παίρνουμε m = 1,
άρα

|S| =
199∑
m=1

m2.

Χρησιμοποιούμε τον γνωστό τύπο

n∑
m=1

m2 =
n(n+ 1)(2n+ 1)

6
,

με n = 199, και βρίσκουμε

|S| = 199 · 200 · 399
6

=
15,880,200

6
= 2,646,700.

Άρα το σύνολο S έχει 2,646,700 στοιχεία.

Άσκηση 2. Πόσοι θετικοί ακέραιοι τετραψήφιοι αριθμοί έχουν τουλάχιστον ένα ψηφίο που είναι
2 ή 3;

Απόδειξη. Θα χρησιμοποιήσουμε την αρχή του συμπληρώματος.

Βήμα 1: Μετράμε όλους τους τετραψήφιους θετικούς ακεραίους. Ένας τετραψήφιος αριθμός
έχει μορφή abcd, όπου a ∈ {1, 2, . . . , 9} και b, c, d ∈ {0, 1, . . . , 9}. Άρα ο συνολικός αριθμός
τετραψήφιων θετικών ακεραίων είναι

9 · 10 · 10 · 10 = 9000.

Βήμα 2: Μετράμε πόσοι δεν έχουν κανένα ψηφίο ίσο με 2 ή 3. Δηλαδή, θέλουμε τετραψήφιους
abcd τέτοιους ώστε

a /∈ {2, 3}, b /∈ {2, 3}, c /∈ {2, 3}, d /∈ {2, 3}.

Για το πρώτο ψηφίο a επιτρέπονται οι τιμές 1, 4, 5, 6, 7, 8, 9, δηλαδή 7 επιλογές. Για καθένα από
τα b, c, d επιτρέπονται όλα τα ψηφία 0, 1, 4, 5, 6, 7, 8, 9, δηλαδή 8 επιλογές (αφαιρούμε τα 2 και
3 από τα 10 ψηφία).
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Επομένως, ο αριθμός των τετραψήφιων που δεν περιέχουν κανένα 2 ή 3 είναι

7 · 83 = 7 · 512 = 3584.

Βήμα 3: Αφαιρούμε από το σύνολο. Άρα οι τετραψήφιοι που έχουν τουλάχιστον ένα ψηφίο ίσο
με 2 ή 3 είναι

9000− 3584 = 5416.

Συνεπώς, η απάντηση είναι 5416 .

Άσκηση 3. Έστω n ≥ 2 θετικός ακέραιος με

n = pα1
1 pα2

2 · · · pαk
k ,

όπου p1, . . . , pk είναι διαφορετικοί πρώτοι αριθμοί και α1, . . . , αk θετικοί ακέραιοι. Πόσους
θετικούς διαιρέτες έχει ο n;

Απόδειξη. Θυμίζουμε ότι ένας θετικός ακέραιος d λέγεται διαιρέτης του n αν και μόνο αν d | n,
δηλαδή αν υπάρχει ακέραιος q ώστε n = dq.

Ιδέα: Κάθε διαιρέτης d του n προκύπτει επιλέγοντας πόσες φορές θα εμφανίζεται κάθε πρώτος
pi στον d, με εκθέτη από 0 μέχρι αi.

Ακριβέστερα: Έστω d θετικός διαιρέτης του n. Στην πρώιμη παραγοντοποίηση του d μπορούν
να εμφανίζονται μόνο οι πρώτοι p1, . . . , pk (αφού αν κάποιος άλλος πρώτος r διαιρούσε το d,
τότε θα διαιρούσε και το n, άτοπο). Άρα ο d γράφεται μοναδικά στη μορφή

d = pβ1
1 pβ2

2 · · · pβk
k

με βi ≥ 0 ακέραιους.
Επειδή d | n, για κάθε i πρέπει να ισχύει βi ≤ αi: αν είχαμε βi > αi, τότε ο pβi

i θα διαιρούσε
τον d και άρα και τον n, όμως αυτό είναι αδύνατο αφού στον n ο pi εμφανίζεται μόνο με δύναμη
αi. Συνεπώς

0 ≤ βi ≤ αi για κάθε i = 1, 2, . . . , k.

Μετράμε τις επιλογές:

• Για τον β1 έχουμε α1 + 1 επιλογές: 0, 1, 2, . . . , α1.

• Για τον β2 έχουμε α2 + 1 επιλογές: 0, 1, 2, . . . , α2.

• …

• Για τον βk έχουμε αk + 1 επιλογές.

Οι επιλογές αυτές είναι ανεξάρτητες, άρα από τον κανόνα του γινομένου ο συνολικός αριθμός
δυνατών k-άδων (β1, . . . , βk) (και άρα διαιρετών d) είναι

(α1 + 1)(α2 + 1) · · · (αk + 1).

Άρα ο n έχει ακριβώς
(α1 + 1)(α2 + 1) · · · (αk + 1)

θετικούς διαιρέτες.

Παράδειγμα: Για n = 20 έχουμε 20 = 22·51. Άρα το πλήθος των διαιρετών είναι (2+1)(1+1) = 6.
Πράγματι οι θετικοί διαιρέτες είναι

1, 2, 4, 5, 10, 20.
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Τέσσερις εκδοχές για παγωτά

Υποθέτουμε ότι υπάρχουν n διαθέσιμες γεύσεις και θέλουμε να φτιάξουμε επιλογές με k
μπάλες.

• Χωνάκι: οι μπάλες έχουν σειρά (άρα οι διατάξεις διακρίνονται).

• κυπελλάκι: η σειρά δεν έχει σημασία (άρα μετράμε σύνολα/πολυσύνολα γεύσεων).

1) (Opening Day) Χωνάκι, επιτρέπονται επαναλήψεις

Άσκηση 4. Πόσα διαφορετικά χωνάκια με k μπάλες μπορούν να φτιαχτούν από n γεύσεις, αν
επιτρέπονται επαναλήψεις (δηλ. μπορεί να επιλεγεί η ίδια γεύση πολλές φορές) και η σειρά
των μπαλών στο χωνάκι μετράει;

Απόδειξη. Για κάθε μία από τις k θέσεις επιλέγουμε μία από τις n γεύσεις, ανεξάρτητα. Άρα,
με τον κανόνα του γινομένου,

n · n · · ·n︸ ︷︷ ︸
k φορές

= nk.

2) (Second Day) Χωνάκι, δεν επιτρέπονται επαναλήψεις

Άσκηση 5. Πόσα διαφορετικά χωνάκια με k μπάλες μπορούν να φτιαχτούν από n γεύσεις,
αν δεν επιτρέπονται επαναλήψεις (κάθε γεύση το πολύ μία φορά) και η σειρά των μπαλών
στο χωνάκι μετράει; (Υποθέτουμε k ≤ n.)

Απόδειξη. Για την 1η θέση έχουμε n επιλογές, για τη 2η n− 1, …, για την k-οστή n− k+1. Άρα

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

Ημέρα 3: αδιάκριτες μπάλες (δεν έχει σημασία η σειρά), δεν επιτρέπονται επανα‐
λήψεις γεύσης

Ύστερα από δύο μέρες συνεχούς εξυπηρέτησης με χωνάκια, οι υπάλληλοι χρειάζονται ένα
διάλειμμα. Την 3η μέρα κρατάμε τον περιορισμό «καμία γεύση πάνω από μία φορά», αλλά
αντικαθιστούμε τα χωνάκια με κυπελλάκια. Τα κυπελλάκια είναι αρκετά μεγάλα ώστε η σειρά
των μπαλών να μην έχει σημασία: ένα κυπελλάκι με chocolate και vanilla μετράει μία φορά,
ανεξάρτητα από το ποια γεύση “είναι από πάνω”. Με αυτούς τους κανόνες, πόσα διαφορετικά
κυπελλάκια των k μπαλών υπάρχουν;

Απόδειξη. Θα συμβολίσουμε την απάντηση με
(
n
k

)
(διαβάζεται «n choose k»): δηλαδή

(
n
k

)
είναι

ο αριθμός των διαφορετικών κυπελλακίων που παίρνουμε διαλέγοντας k μπάλες από n γεύσεις,
χωρίς να επαναλαμβάνεται γεύση.

Θυμόμαστε την Ημέρα 2: εκεί δεν επιτρέπαμε επαναλήψεις αλλά η σειρά μετρούσε, οπότε
είχαμε συνολικά

n!

(n− k)!

διαφορετικά χωνάκια.
Τώρα, πάρε ένα συγκεκριμένο κυπελλάκι με k μπάλες, όλες διαφορετικών γεύσεων. Με πό-

σους διαφορετικούς τρόπους μπορούμε να βάλουμε αυτές τις k μπάλες σε χωνάκι (όπου η σειρά
μετράει); Αυτό είναι απλώς μια μετάθεση των k διακριτών γεύσεων, άρα υπάρχουν k! τρόποι.
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Άρα: (α) πρώτα διαλέγουμε το κυπελλάκι (δηλ. το σύνολο των k γεύσεων) με
(
n
k

)
τρόπους

και (β) μετά διατάσσουμε τις k γεύσεις στο χωνάκι με k! τρόπους. Επομένως(
n

k

)
· k! =

n!

(n− k)!
.

Άρα (
n

k

)
=

n!

k!(n− k)!
.

Το
(
n
k

)
ονομάζεται διωνυμικός συντελεστής.

Ημέρα 4: αδιάκριτες μπάλες (δεν έχει σημασία η σειρά), επιτρέπονται επαναλήψεις
γεύσης

Την τελευταία μέρα, το κατάστημα αφαιρεί τον περιορισμό και επιτρέπει να πάρουμε όσες
μπάλες θέλουμε από μια γεύση. Υπάρχουν ακόμα n γεύσεις. Πόσα k-μπαλα κυπελλάκια υπάρ-
χουν;

Είναι δελεαστικό να σκεφτούμε «από την Ημέρα 1 είχαμε nk χωνάκια και τώρα δεν μας
νοιάζει η σειρά, άρα να διαιρέσουμε με k!». Όμως αυτό είναι λάθος: το k! μετράει διατάξεις
διαφορετικών αντικειμένων. Αν υπάρχουν επαναλήψεις, δεν αντιστοιχούν k! διαφορετικά χωνάκια
στην ίδια επιλογή γεύσεων (π.χ. όταν όλες οι μπάλες είναι ίδια γεύση, υπάρχει μόνο ένα χωνάκι,
άρα η διαίρεση με k! δεν βγάζει νόημα).

Θα χρησιμοποιήσουμε τη μέθοδο αστέρια και μπάρες (stars and bars). Χρησιμοποιούμε k
αστέρια, κάθε ένα αντιστοιχεί σε μία μπάλα παγωτού, και n−1 μπάρες ως διαχωριστικά ανάμεσα
στις γεύσεις. Όσα αστέρια εμφανίζονται πριν από την 1η μπάρα είναι μπάλες της 1ης γεύσης, όσα
είναι ανάμεσα στην 1η και 2η μπάρα είναι της 2ης, κ.ο.κ. Έτσι επιτρέπεται και «πολλές μπάλες
της ίδιας γεύσης» (πολλά αστέρια ανάμεσα σε δύο μπάρες) και «καμία μπάλα μιας γεύσης»
(δύο μπάρες κολλητά).

Παράδειγμα: για 3 γεύσεις coffee, mint chip, chocolate και k = 5, το κυπελλάκι με 2 coffee, 2
mint chip, 1 chocolate γράφεται ως

∗∗︸︷︷︸
coffee

∣∣ ∗∗︸︷︷︸
mintchip

∣∣ ∗︸︷︷︸
chocolate

.

Δύο μπάρες αρκούν για 3 γεύσεις.
Για παράδειγμα, τα διαγράμματα

∗ ∗ ∗ ∗ | ∗ ∗ | ∗ ∗ ∗ και ∗ || ∗ ∗

αντιστοιχούν αντίστοιχα σε

∗ ∗ ∗∗︸ ︷︷ ︸
coffee

∣∣ ∗∗︸︷︷︸
mintchip

∣∣ ∗ ∗ ∗︸︷︷︸
chocolate

και ∗︸︷︷︸
coffee

∣∣ ︸︷︷︸
mintchip

∣∣ ∗∗︸︷︷︸
chocolate

,

δηλαδή στο πρώτο έχουμε 4 μπάλες coffee, 2 mint chip, 3 chocolate, ενώ στο δεύτερο 1 coffee, 0
mint chip, 2 chocolate.

Γενικά, για να χωρίσουμε σε n περιοχές (γεύσεις) χρειαζόμαστε n− 1 μπάρες και για k μπάλες
χρειαζόμαστε k αστέρια. Άρα έχουμε συνολικά n+ k − 1 θέσεις που θα γεμίσουν με k αστέρια
και n − 1 μπάρες. Επιλέγουμε ποιες k από αυτές τις n + k − 1 θέσεις θα καταληφθούν από
αστέρια (τα αστέρια είναι όμοια, άρα η σειρά δεν μετράει), οπότε έχουμε(

n+ k − 1

k

)
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διαφορετικές διατάξεις αστεριών και μπαρών. Κάθε τέτοια διάταξη αντιστοιχεί μοναδικά σε
ένα κυπελλάκι, και αντίστροφα. Άρα ο αριθμός των k-μπαλων κυπελλακίων, όταν επιτρέπονται
επαναλήψεις γεύσης, είναι (

n+ k − 1

k

)
.

Άσκηση 6. Έχουμε 3 γεύσεις παγωτού: βανίλια, σοκολάτα και φράουλα. Θέλουμε να φτιά-
ξουμε ένα χωνάκι με συνολικά k μπάλες, έτσι ώστε

v μπάλες να είναι βανίλια, c μπάλες να είναι σοκολάτα, s μπάλες να είναι φράουλα,

όπου v, c, s ≥ 0 και v + c + s = k. Πόσα διαφορετικά χωνάκια υπάρχουν (δηλαδή πόσες
διαφορετικές σειρές γεύσεων μήκους k με αυτές τις πληθικότητες);

Απόδειξη. Οι k μπάλες στο χωνάκι έχουν θέσεις (κάτω–πάνω), άρα η σειρά μετράει. Θα επιλέ-
ξουμε σε ποιες θέσεις μπαίνει κάθε γεύση.
Πρώτα διαλέγουμε ποιες v από τις k θέσεις θα είναι βανίλια: αυτό γίνεται με(

k

v

)
τρόπους.
Απομένουν k − v θέσεις. Από αυτές διαλέγουμε ποιες c θα είναι σοκολάτα: αυτό γίνεται με(

k − v

c

)
τρόπους.
Οι υπόλοιπες θέσεις είναι αναγκαστικά φράουλα, και είναι

k − v − c = s

θέσεις.
Άρα, με τον κανόνα του γινομένου,(

k

v

)(
k − v

c

)
=

k!

v!(k − v)!
· (k − v)!

c! s!
=

k!

v! c! s!
.

Επομένως ο αριθμός των χωνάκων είναι

k!

v! c! s!
.

Άσκηση 7. Ένας φοιτητής Ιατρικής πρέπει να εργαστεί σε ένα νοσοκομείο για 5 ημέρες μέσα
στον Ιανουάριο (ο Ιανουάριος έχει 31 ημέρες). Δεν επιτρέπεται να εργαστεί δύο διαδοχικές
ημέρες. Με πόσους διαφορετικούς τρόπους μπορεί να επιλέξει τις 5 ημέρες εργασίας του;

Ας γράψουμε τις ημέρες που επιλέγει (σε αύξουσα σειρά) ως

1 ≤ a1 < a2 < a3 < a4 < a5 ≤ 31.

Ο περιορισμός «όχι δύο διαδοχικές ημέρες» ισοδυναμεί με

ai+1 ≥ ai + 2 (i = 1, 2, 3, 4).
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Θέτουμε τώρα
bi := ai − (i− 1) (i = 1, 2, 3, 4, 5).

Τότε για κάθε i = 1, 2, 3, 4 έχουμε

bi+1 − bi =
(
ai+1 − i

)
−
(
ai − (i− 1)

)
= (ai+1 − ai)− 1 ≥ 1,

άρα
b1 < b2 < b3 < b4 < b5.

Επίσης, από a1 ≥ 1 παίρνουμε b1 ≥ 1, ενώ από a5 ≤ 31 παίρνουμε

b5 = a5 − 4 ≤ 31− 4 = 27.

Άρα η 5-άδα (b1, . . . , b5) είναι απλώς επιλογή 5 διαφορετικών αριθμών από το σύνολο {1, 2, . . . , 27}.
Αντίστροφα, αν πάρουμε οποιαδήποτε 1 ≤ b1 < b2 < b3 < b4 < b5 ≤ 27 και ορίσουμε

ai := bi + (i− 1),

τότε 1 ≤ a1 < · · · < a5 ≤ 31 και

ai+1 − ai = (bi+1 − bi) + 1 ≥ 2,

άρα οι ai δεν είναι διαδοχικοί. Επομένως έχουμε μια αμφιμονοσήμαντη αντιστοιχία μεταξύ των
επιτρεπτών επιλογών ημερών και των 5-υποσυνόλων του {1, . . . , 27}.

Συνεπώς ο αριθμός των τρόπων είναι (
27

5

)
.

Αριθμητικά, (
27

5

)
=

27 · 26 · 25 · 24 · 23
5!

=
9 687 600

120
= 80 730.

Άρα οι τρόποι είναι
(
27

5

)
= 80 730 .

Άσκηση 8. Σε N καρέκλες τοποθετημένες σε μια σειρά, θέλουμε να καθίσουν k διακριτοί
μαθητές, με την προϋπόθεση ότι κάθε καρέκλα χωράει το πολύ έναν μαθητή. Με πόσους
διαφορετικούς τρόπους μπορούν να καθίσουν;

Απόδειξη. Η διαδικασία γίνεται σε δύο ανεξάρτητα βήματα.
Βήμα 1: Επιλογή των k καρεκλών που θα καταληφθούν. Επιλέγουμε k καρέκλες από τις N :(

N

k

)
τρόποι.

Βήμα 2: Ανάθεση των μαθητών στις επιλεγμένες καρέκλες. Αφού έχουν επιλεγεί οι k καρέκλες,
οι k διακριτοί μαθητές μπορούν να τοποθετηθούν σε αυτές με k! τρόπους (όλες οι μεταθέσεις).

Άρα συνολικά οι τρόποι είναι (
N

k

)
k! .

Ισοδύναμα, αυτό είναι ο αριθμός των διατάξεων k στοιχείων από N , δηλαδή(
N

k

)
k! =

N !

(N − k)!
.
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Άσκηση 9. Σε N καρέκλες τοποθετημένες σε μια σειρά κάθονται k διακεκριμένοι μαθητές
(κάθε καρέκλα χωράει το πολύ έναν μαθητή). Με πόσους τρόπους μπορούν να καθίσουν,
ώστε κανένας μαθητής να μην κάθεται ακριβώς δίπλα σε άλλον;

Απόδειξη. Βήμα 1: Επιλογή των θέσεων. Αρχικά αγνοούμε ποιος κάθεται πού και μετράμε μόνο
ποιες k καρέκλες θα καταληφθούν, με την προϋπόθεση να μην είναι γειτονικές. Αν οι επιλεγμένες
θέσεις είναι

1 ≤ a1 < a2 < · · · < ak ≤ N,

η συνθήκη «όχι γειτονικές» ισοδυναμεί με ai+1 ≥ ai + 2 για i = 1, . . . , k − 1. Θέτουμε bi :=
ai− (i− 1). Τότε 1 ≤ b1 < b2 < · · · < bk ≤ N − k+1. Άρα οι τρόποι επιλογής των θέσεων είναι(

N − k + 1

k

)
.

Βήμα 2: Ανάθεση μαθητών στις θέσεις. Αφού επιλεγούν οι k θέσεις, οι k διακριτοί μαθητές
μπορούν να τοποθετηθούν σε αυτές με k! τρόπους.

Άρα συνολικά οι τρόποι είναι (
N − k + 1

k

)
k! .

Δεύτερος Τρόπος. Θεωρούμε πρώτα μόνο ποιες καρέκλες καταλαμβάνονται.
Για να μη κάθονται δύο μαθητές δίπλα-δίπλα, ανάμεσα σε κάθε δύο διαδοχικούς (από αρι-

στερά προς τα δεξιά) μαθητές πρέπει να υπάρχει τουλάχιστον μία άδεια καρέκλα. Άρα δεσμεύ-
ουμε προκαταβολικά k−1 άδειες καρέκλες, μία ανάμεσα σε κάθε ζεύγος μαθητών, σχηματίζοντας
το πρότυπο

M □M □ · · · □M,

που περιέχει k μαθητές και k − 1 δεσμευμένες άδειες καρέκλες, άρα καταλαμβάνει συνολικά
2k − 1 καρέκλες.

Αν N < 2k−1, δεν υπάρχει καμία διάταξη. Υποθέτουμε λοιπόν N ≥ 2k−1. Τότε οι συνολικές
άδειες καρέκλες είναι N − k, από τις οποίες έχουμε ήδη δεσμεύσει k− 1. Επομένως απομένουν

r = (N − k)− (k − 1) = N − 2k + 1

ελεύθερες άδειες καρέκλες που μπορούμε να τοποθετήσουμε οπουδήποτε κάποιον μαθητή.
Οι r αυτές άδειες καρέκλες μοιράζονται σε k + 1 “θήκες”: πριν από τον πρώτο μαθητή,

ανάμεσα σε κάθε ζεύγος μαθητών (επιπλέον πάνω από την ήδη δεσμευμένη άδεια), και μετά
τον τελευταίο μαθητή. Αυτό γίνεται με συνδυασμούς με επανάληψη, όπως ακριβώς την τέταρτη
ημέρα με τα παγωτά. Το πλήθος είναι(

r + k + 1− 1

k

)
=

(
N − 2k + 1 + k

k

)
=

(
N − k + 1

k

)
.

Άρα αυτός είναι ο αριθμός τρόπων επιλογής των k θέσεων.
Τέλος, αν οι k μαθητές είναι διακριτοί, τότε για κάθε επιλογή θέσεων μπορούν να καθίσουν

με k! τρόπους. Συνεπώς ο συνολικός αριθμός καθισμάτων είναι(
N − k + 1

k

)
k! .
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Άσκηση 10. Σε κυκλικό τραπέζι με n = 10 θέσεις κάθονται k = 3 διακριτοί μαθητές, ώστε
κανένας να μην κάθεται δίπλα σε άλλον (και η θέση 10 είναι γειτονική με τη θέση 1). Με
πόσους τρόπους μπορούν να καθίσουν;

Απόδειξη. Μετράμε πρώτα τις επιλογές θέσεων και στο τέλος πολλαπλασιάζουμε επί k!.
Χωρίζουμε σε δύο περιπτώσεις ανάλογα με το αν η θέση 1 είναι κενή ή κατειλημμένη.

Περίπτωση Α: Η θέση 1 είναι κενή. Τότε οι θέσεις 2, 3, . . . , 10 σχηματίζουν γραμμή 9 θέσεων και
θέλουμε 3 μη-γειτονικές: (

9− 3 + 1

3

)
=

(
7

3

)
= 35.

Περίπτωση Β: Η θέση 1 είναι κατειλημμένη. Τότε οι θέσεις 2 και 10 αποκλείονται. Μένουν οι
3, 4, . . . , 9 (γραμμή 7 θέσεων) και πρέπει να διαλέξουμε ακόμη 2 μη-γειτονικές:(

7− 2 + 1

2

)
=

(
6

2

)
= 15.

Άρα οι επιλογές θέσεων είναι 35 + 15 = 50. Τέλος, για κάθε επιλογή θέσεων οι 3 διακριτοί
μαθητές κάθονται με 3! = 6 τρόπους. Συνεπώς οι συνολικοί τρόποι είναι

50 · 3! = 300 .

Γενικά: για n θέσεις σε κύκλο και k μαθητές (με n ≥ 2k),

#{επιλογές θέσεων} =

(
n− k

k

)
+

(
n− k − 1

k − 1

)
=

n

n− k

(
n− k

k

)
,

άρα

#{τοποθέτησης μαθητών} = k!

((
n− k

k

)
+

(
n− k − 1

k − 1

))
= k!

n

n− k

(
n− k

k

)
.

Ο κύκλος (n = 10)

1

2

3

4
5

6

7

8

9
10

Περ. A: 1 κενή

1

2

3

4
5

6

7

8

9
10

1

Περ. B: 1 κατειλημμένη

1

2

3

4
5

6

7

8

9
10

1

2

10

Σχήμα 1: Διάσπαση σε δύο περιπτώσεις ανάλογα με τη θέση 1.

Κυκλικές αναδιατάξεις

Με πόσους τρόπους μπορούν να κάτσουν σε ένα τραπέζι n ιππότες;
Απάντηση: (n− 1)!. (Αυτό συμβαίνει διότι σε κυκλική διάταξη η σχετική θέση μετράει και όχι η
απόλυτη, οπότε ”καρφώνουμε” τον έναν και μεταθέτουμε τους υπόλοιπους n− 1).
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Άσκηση 11. Μοιράζουμε 15 (ίδιες) μπάλες του τένις σε 6 παιδιά.

(α) Να βρεθεί ο αριθμός n1 όλων των δυνατών μοιρασιών.

(β) Να βρεθεί ο αριθμός n2 των μοιρασιών στις οποίες κάθε παιδί παίρνει τουλάχιστον μία
μπάλα.

Απόδειξη. Αν θεωρήσουμε όλες τις μπάλες ως αδιαχώριστες, τότε δύο μοιρασιές είναι διαφορε-
τικές αν κάποιο παιδί πάρει διαφορετικό πλήθος μπαλών. Για άλλη μία φορά κωδικοποιούμε
κάθε μοίρασμα με μια ακολουθία από μηδενικά και μονάδες: γράφουμε τόσες 1 όσες μπάλες
παίρνει το πρώτο παιδί έπειτα, χωρισμένες με ένα και μόνο 0, γράφουμε τόσες 1 όσες μπάλες
παίρνει το δεύτερο παιδί, κ.ο.κ. Με αυτόν τον τρόπο παίρνουμε μία 20-άδα που αποτελείται
από 15 άσους και 5 μηδενικά άρα υπάρχουν ακριβώς

n1 =

(
20

5

)
τέτοιες ακολουθίες.

Για να βρούμε τον αριθμό n2 των πιο «δίκαιων» μοιρασιών, όπου κανένα παιδί δεν μένει
χωρίς μπάλα, χρησιμοποιούμε το ακόλουθο τρικ: πρώτα δίνουμε σε όλα τα παιδιά από μία μπάλα
και μετά μοιράζουμε τις υπόλοιπες 9 μπάλες χωρίς κανέναν περιορισμό. Χρησιμοποιώντας το
εύκολο μέρος του (α), συμπεραίνουμε ότι αυτό μπορεί να γίνει με

n2 = P0(9, 5) =

(
14

5

)
τρόπους.

Παράδειγμα 2.2. Να βρεθεί το πλήθος των ακέραιων λύσεων της εξίσωσης

x1 + x2 + · · ·+ xk = n

με περιορισμούς
xi ≥ 0 (i = 1, . . . , k).

Απόδειξη. Θεωρούμε n αστέρια σε σειρά και θέλουμε να τα χωρίσουμε σε k ομάδες (όπου
επιτρέπεται μια ομάδα να είναι κενή). Για να δημιουργήσουμε k ομάδες, τοποθετούμε k −
1 μπάρες ανάμεσα από τα αστέρια. Έτσι παίρνουμε μια 1-1 αντιστοιχία ανάμεσα σε λύσεις
(x1, . . . , xk) και σε διατάξεις με n αστέρια και k − 1 μπάρες.

Συνολικά υπάρχουν n+k−1 θέσεις αντικειμένων, από τις οποίες επιλέγουμε τις k−1 θέσεις
των μπαρών. Άρα ο αριθμός λύσεων είναι(

n+ k − 1

k − 1

)
.

Παράδειγμα 2.3. Να βρεθεί το πλήθος των ακέραιων λύσεων της εξίσωσης

x1 + x2 + · · ·+ xk = n

με περιορισμούς
xi ≥ 1 (i = 1, . . . , k).
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Απόδειξη. Θέτουμε yi = xi − 1 ≥ 0. Τότε

y1 + y2 + · · ·+ yk = n− k, yi ≥ 0.

Με τη μέθοδο αστέρια και μπάρες ο αριθμός λύσεων είναι(
(n− k) + k − 1

k − 1

)
=

(
n− 1

k − 1

)
.

Άρα το πλήθος λύσεων είναι
(
n− 1

k − 1

)
.

Παράδειγμα 2.4. Ο Α, ο Β, ο Γ και ο Δ θέλουν να ιδρύσουν μια εταιρεία και έχουν να μοιράσουν
16 ίδιες μετοχές ανάμεσα στα 4 άτομα. Ισχύουν οι περιορισμοί:

• Κάθε άτομο πρέπει να πάρει θετικό ακέραιο αριθμό μετοχών και όλες οι 16 μετοχές να
μοιραστούν.

• Κανένα άτομο δεν μπορεί να έχει περισσότερες μετοχές από τους άλλους τρεις μαζί.

Με δεδομένο ότι οι μετοχές είναι αδιαχώριστες αλλά τα άτομα διακριτά, με πόσους τρόπους
μπορεί να γίνει το μοίρασμα;

Απόδειξη. Χωρίς τον δεύτερο περιορισμό, μετράμε τις τετράδες θετικών ακεραίων

(x1, x2, x3, x4), x1 + x2 + x3 + x4 = 16, xi ≥ 1.

Με αστέρια και μπάρες: γράφουμε 16 αστέρια και τοποθετούμε 3 μπάρες ώστε να χωρίσουμε τα
αστέρια σε 4 μη κενά κομμάτια. Οι μπάρες δεν επιτρέπεται να μπουν στα άκρα ούτε δίπλα-δίπλα.
Άρα επιλέγουμε 3 θέσεις από τις 15 διαθέσιμες (ανάμεσα σε διαδοχικά αστέρια), οπότε

#{όλα τα μοιράσματα με xi ≥ 1} =

(
15

3

)
= 455.

Τώρα αφαιρούμε τα “κακά” μοιράσματα όπου κάποιο άτομο έχει περισσότερες μετοχές από
τους άλλους τρεις μαζί. Αν, π.χ., ο Α έχει x1 μετοχές, ο περιορισμός παραβιάζεται όταν

x1 > x2 + x3 + x4 = 16− x1 ⇐⇒ x1 > 8 ⇐⇒ x1 ≥ 9.

Άρα μετράμε πόσα μοιράσματα έχουν x1 ≥ 9. Θέτουμε x′1 = x1 − 8, τότε x′1 ≥ 1 και

x′1 + x2 + x3 + x4 = 8, x′1, x2, x3, x4 ≥ 1.

Άρα ο αριθμός τους είναι (
7

3

)
= 35.

Το ίδιο πλήθος ισχύει αν το άτομο με τις πολλές μετοχές είναι ο Β ή ο Γ ή ο Δ, δηλαδή 4
(
7
3

)
συνολικά.

Τέλος, δεν μπορεί να υπάρχουν δύο άτομα με ≥ 9 μετοχές ταυτόχρονα (θα χρειαζόταν
τουλάχιστον 18 μετοχές), άρα δεν υπάρχει διπλομέτρηση. Συνεπώς το ζητούμενο πλήθος είναι(

15

3

)
− 4

(
7

3

)
= 455− 4 · 35 = 315.
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Εφαρμογή 9. Η κηπουρός θέλει να φυτέψει 5 ίδια κόκκινα, 3 ίδια κίτρινα και 2 ίδια λευκά
λουλούδια σε μια σειρά. Με πόσους τρόπους μπορεί;

Απόδειξη. Πρόκειται για μεταθέσεις με επανάληψη. Το πλήθος δίνεται από τον τύπο:

A =
10!

5! · 3! · 2!
Υπολογισμός:

3.628.800

120 · 6 · 2
=

3.628.800

1.440
= 2.520 τρόποι.

Παράδειγμα 2.5. Αναπτύσσουμε και απλοποιούμε την παράσταση (x+ y + z)10.

(α) Πόσοι διαφορετικοί όροι (μονώνυμα) εμφανίζονται στην τελική ανάπτυξη;

(β) Ποιος είναι ο συντελεστής του μονωνύμου x4y3z3 στην ανάπτυξη του (x+ y + z)10;

Απόδειξη. (α) Κάθε όρος στην ανάπτυξη του (x+ y + z)10 είναι της μορφής

k xaybzc,

όπου k είναι κάποια σταθερά και οι εκθέτες a, b, c είναι μη αρνητικοί ακέραιοι με

a+ b+ c = 10.

Άρα το ζητούμενο πλήθος ισούται με το πλήθος των λύσεων της εξίσωσης a+ b+ c = 10 σε μη
αρνητικούς ακεραίους. Με τη μέθοδο αστέρια και μπάρες (10 αστέρια και 2 μπάρες) αυτό είναι(

10 + 3− 1

3− 1

)
=

(
12

2

)
= 66.

(β) Στο πολυωνυμικό ανάπτυγμα του (x+y+z)10, ο συντελεστής του xaybzc (με a+b+c = 10)
δίνεται από τον τριωνυμικό συντελεστή(

10

a, b, c

)
=

10!

a! b! c!
.

Για a = 4, b = 3, c = 3 παίρνουμε(
10

4, 3, 3

)
=

10!

4! 3! 3!
=

3628800

24 · 6 · 6
=

3628800

864
= 4200.

Άρα ο συντελεστής του x4y3z3 είναι 4200 .

Παράδειγμα 2.6. Σε ένα ορθογώνιο πλέγμα, από το (0, 0) θέλουμε να φτάσουμε στο (a, b)
κάνοντας μόνο κινήσεις δεξιά (1, 0) και πάνω (0, 1). Πόσες τέτοιες διαδρομές υπάρχουν;

Απόδειξη. Κάθε διαδρομή αποτελείται από ακριβώς a κινήσεις δεξιά και b κινήσεις πάνω, άρα
συνολικά από a+ b κινήσεις.

Αν κωδικοποιήσουμε τη διαδρομή ως λέξη μήκους a+ b πάνω στο αλφάβητο {R,U}, όπου R
σημαίνει “δεξιά” και U σημαίνει “πάνω”, τότε κάθε επιτρεπτή διαδρομή αντιστοιχεί 1-1 σε μια
τέτοια λέξη που έχει ακριβώς a γράμματα R (και άρα b γράμματα U ).

Επομένως, αρκεί να επιλέξουμε σε ποιες a από τις a+ b θέσεις της λέξης θα μπουν τα R. Ο
αριθμός επιλογών είναι (

a+ b

a

)
.

Άρα το πλήθος διαδρομών είναι
(
a+ b

a

)
.
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x

y

(0, 0)

(a, b)

a βήματα δεξιά

b
βή

μα
τα

πά
νω

R U

R,R U

R U

R

Σχήμα 2: Παράδειγμα διαδρομής από (0, 0) στο (a, b) με κινήσεις μόνο δεξιά (R) και πάνω (U ).

Άσκηση 12. Για θετικό ακέραιο n, πόσες δυαδικές συμβολοσειρές μήκους n (δηλαδή λέξεις
μήκους n πάνω στο αλφάβητο {0, 1}) δεν περιέχουν δύο συνεχόμενα 1; Συμβολίζουμε τον
αριθμό με an.

Απόδειξη. Θα βρούμε αναδρομή για το an χωρίζοντας τις επιτρεπτές συμβολοσειρές ανάλογα με
το πρώτο σύμβολο.
Περίπτωση 1: Η συμβολοσειρά αρχίζει με 0. Τότε τα υπόλοιπα n− 1 ψηφία σχηματίζουν οποια-
δήποτε επιτρεπτή συμβολοσειρά μήκους n − 1. Άρα οι συμβολοσειρές αυτής της μορφής είναι
an−1.
Περίπτωση 2: Η συμβολοσειρά αρχίζει με 1. Για να μην υπάρχουν δύο συνεχόμενα 1, το δεύτερο
ψηφίο πρέπει αναγκαστικά να είναι 0. Άρα η συμβολοσειρά αρχίζει με 10, και τα υπόλοιπα n−2
ψηφία σχηματίζουν οποιαδήποτε επιτρεπτή συμβολοσειρά μήκους n− 2. Άρα οι συμβολοσειρές
αυτής της μορφής είναι an−2.

Οι δύο περιπτώσεις είναι ασυμβίβαστες και καλύπτουν όλες τις επιτρεπτές συμβολοσειρές,
οπότε

an = an−1 + an−2 (n ≥ 3).

Απομένει να δώσουμε αρχικές τιμές:

a1 = 2 (οι 0, 1), a2 = 3 (οι 00, 01, 10).

Άρα το an ορίζεται από την αναδρομή

a1 = 2, a2 = 3, an = an−1 + an−2 (n ≥ 3).

(Ισοδύναμα, an = Fn+2 όπου Fm οι αριθμοί Fibonacci με F1 = F2 = 1.)

Άσκηση 13. Θεωρούμε τους n-ψήφιους (δεκαδικούς) αριθμούς, δηλαδή ακολουθίες ψηφίων
d1d2 · · · dn με d1 ∈ {1, 2, . . . , 9} και di ∈ {0, 1, . . . , 9} για i ≥ 2. Θέλουμε να μετρήσουμε
όσους έχουν την ιδιότητα ότι κανένα δύο διαδοχικά ψηφία δεν είναι ίσα (δηλαδή di ̸= di+1 για
κάθε i = 1, . . . , n− 1).

Ορίζουμε:

En := #{τέτοιους n-ψήφιους που τελειώνουν σε άρτιο ψηφίο}, On := #{τέτοιους n-ψήφιους που τελειώνουν σε περιττό ψηφίο}.

1. Να αποδειχθούν οι αναδρομές

En+1 = 4En + 5On, On+1 = 5En + 4On,

με αρχικές τιμές E1 = 4, O1 = 5.

2. Χρησιμοποιώντας πίνακες, να υπολογιστούν κλειστοί τύποι για En και On, υπολογίζο-
ντας τη δύναμη του πίνακα που εμφανίζεται.
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Απόδειξη. (1) Οι αναδρομές. Για να φτιάξουμε έναν επιτρεπτό (n+1)-ψήφιο, κοιτάμε το τελευ-
ταίο ψηφίο.

Για En+1: Θέλουμε το τελευταίο ψηφίο να είναι άρτιο (0,2,4,6,8).

• Αν το προηγούμενο (δηλαδή το n-οστό) ψηφίο είναι άρτιο, τότε υπάρχουν 5 άρτια ψηφία
αλλά απαγορεύεται να επαναλάβουμε το ίδιο, άρα 4 επιλογές για το τελευταίο ψηφίο.
Αυτό δίνει 4En.

• Αν το n-οστό ψηφίο είναι περιττό, τότε μπορούμε να διαλέξουμε οποιοδήποτε από τα 5
άρτια ψηφία, άρα παίρνουμε 5On.

Άρα En+1 = 4En + 5On.
Ομοίως για On+1: Αν το n-οστό ψηφίο είναι περιττό, έχουμε 4 επιλογές περιττού ψηφίου

(όχι το ίδιο), ενώ αν είναι άρτιο, έχουμε 5 επιλογές περιττού. Άρα On+1 = 5En + 4On.
Οι αρχικές τιμές είναι:

E1 = 4 (2, 4, 6, 8), O1 = 5 (1, 3, 5, 7, 9).

(2) Μέθοδος πινάκων και υπολογισμός δύναμης. Γράφουμε το σύστημα σε μορφή πίνακα:(
En+1

On+1

)
= A

(
En

On

)
, A =

(
4 5
5 4

)
,

(
E1

O1

)
=

(
4

5

)
.

Άρα (
En

On

)
= An−1

(
4

5

)
.

Υπολογίζουμε το Am διαγωνιοποιώντας τον A. Ο χαρακτηριστικός πολυώνυμος είναι

det(A− λI) = (4− λ)2 − 25 = λ2 − 8λ− 9 = (λ− 9)(λ+ 1),

άρα οι ιδιοτιμές είναι λ1 = 9 και λ2 = −1. Εύκολα βρίσκουμε ιδιοδιανύσματα:

λ1 = 9 : v1 =

(
1

1

)
, λ2 = −1 : v2 =

(
1

−1

)
.

Θέτουμε

P =

(
1 1

1 −1

)
, D =

(
9 0

0 −1

)
.

Τότε A = PDP−1 και (ελέγχεται άμεσα) P−1 = 1
2P . Άρα για κάθε m ≥ 0,

Am = PDmP−1 =
1

2

(
1 1

1 −1

)(
9m 0

0 (−1)m

)(
1 1

1 −1

)
.

Κάνοντας τον πολλαπλασιασμό παίρνουμε τον κλειστό τύπο

Am =
1

2

(
9m + (−1)m 9m − (−1)m

9m − (−1)m 9m + (−1)m

)
.

Θέτοντας m = n− 1 και πολλαπλασιάζοντας με
(
4
5

)
,(

En

On

)
= An−1

(
4

5

)
=

1

2

(
9n−1 + (−1)n−1 9n−1 − (−1)n−1

9n−1 − (−1)n−1 9n−1 + (−1)n−1

)(
4

5

)
.
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Υπολογίζοντας τα δύο μέλη:

En =
1

2

(
(9n−1 + (−1)n−1) · 4 + (9n−1 − (−1)n−1) · 5

)
=

9n + (−1)n

2
,

On =
1

2

(
(9n−1 − (−1)n−1) · 4 + (9n−1 + (−1)n−1) · 5

)
=

9n − (−1)n

2
.

Άρα

En =
9n + (−1)n

2
, On =

9n − (−1)n

2
.

(Συνεπώς En +On = 9n, όπως αναμένεται.)
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