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1 Η πρώτη αναγωγή

1.1 Άθροιση κατά Abel

Θεώρημα 1.1 (Άθροιση κατά Abel). Έστω 0 < y < x πραγματικοί αριθμοί και f : [y, x] → R
συνεχώς παραγωγίσιμη. Θεωρούμε την ακολουθία μιγαδικών αριθμών (an)n≥1 και για κάθε
t > 0 ορίζουμε

A(t) :=
∑
n≤t

an.

Τότε ισχύει ∑
y<n≤x

an f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y
A(t) f ′(t) dt.

Θεώρημα 1.2 (Τύπος άθροισης Euler). Έστω 0 < y < x πραγματικοί αριθμοί και f : [y, x] → R
με συνεχή παράγωγο f ′ στο [y, x]. Τότε∑

y<n≤x

f(n) =

∫ x

y
f(t) dt+

∫ x

y
{t} f ′(t) dt+ {y} f(y)− {x} f(x),

όπου {t} = t− btc είναι το κλασματικό μέρος.

Οι παρακάτω δύο εφαρμογές είναι χαρακτηριστικές για το πώς χρησιμοποιούμε τον τύπο
άθροισης.
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Θεώρημα 1.3. Για x ≥ 1 ισχύει ∑
n≤x

1

n
= logx+ γ +O

(
1

x

)
, (1)

όπου γ είναι η σταθερά του Euler, οριζόμενη από

γ = 1−
∫ ∞

1

{t}
t2

dt.

Επιπλέον,

γ = lim
x→∞

∑
n≤x

1

n
− logx

 .

Απόδειξη. Εφαρμόζουμε το Θεώρημα 1.2 για την συνάρτηση f(t) = 1/t και y = 1. Τότε {1} = 0
και f ′(t) = −1/t2, άρα ∑

1<n≤x

1

n
=

∫ x

1

1

t
dt+

∫ x

1
{t}
(
− 1

t2

)
dt− {x} 1

x
.

Επομένως ∑
n≤x

1

n
= 1 + logx−

∫ x

1

{t}
t2

dt− {x}
x
.

Προσθέτουμε και αφαιρούμε
∫∞
1

{t}
t2
dt:∑

n≤x

1

n
= logx+

(
1−

∫ ∞

1

{t}
t2

dt
)
+

∫ ∞

x

{t}
t2

dt− {x}
x
.

Ορίζοντας γ = 1−
∫∞
1

{t}
t2
dt παίρνουμε∑
n≤x

1

n
= logx+ γ +

∫ ∞

x

{t}
t2

dt− {x}
x
.

Τώρα 0 ≤ {t} ≤ 1, άρα

0 ≤
∫ ∞

x

{t}
t2

dt ≤
∫ ∞

x

1

t2
dt =

1

x
, 0 ≤ {x}

x
≤ 1

x
.

Άρα το υπόλοιπο είναι O(1/x) και προκύπτει η (1). Τέλος, καθώς x→ ∞ το O(1/x) τείνει στο
0, οπότε ∑

n≤x

1

n
− logx→ γ,

δηλαδή γ = limx→∞

(∑
n≤x

1
n − logx

)
.

Ορισμοί

Για x ≥ 0 θέτουμε:

π(x) := #{p ≤ x : p πρώτος}, θ(x) :=
∑
p≤x

log p,

και
ψ(x) :=

∑
n≤x

Λ(n) =
∑
pk≤x

log p,

όπου Λ είναι η συνάρτηση von Mangoldt: Λ(n) = log p αν n = pk για κάποιον πρώτο p και k ≥ 1,
και Λ(n) = 0 αλλιώς.
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Θεώρημα 1.4. Για κάθε x ≥ 2 ισχύουν οι ταυτότητες

θ(x) = π(x) logx−
∫ x

2

π(t)

t
dt,

και
π(x) =

θ(x)

logx
+

∫ x

2

θ(t)

t(log t)2
dt.

Απόδειξη. Εφαρμόζουμε το Θεώρημα 1.1 με y = 2,

an = 1{n πρώτος}, f(t) = log t, A(t) =
∑
n≤t

an = π(t).

Τότε ∑
2<n≤x

anf(n) =
∑

2<p≤x

log p = θ(x)− log 2.

Το Θεώρημα 1.1 δίνει

θ(x)− log 2 = π(x) logx− π(2) log 2−
∫ x

2
π(t)

dt

t
.

Επειδή π(2) = 1, οι όροι log 2 απαλείφονται, και παίρνουμε

θ(x) = π(x) logx−
∫ x

2

π(t)

t
dt.

Εφαρμόζουμε πάλι το Θεώρημα 1.1 με y = 2,

an = (logn) 1{n πρώτος}, f(t) =
1

log t
, A(t) =

∑
n≤t

an = θ(t).

Τότε ∑
2<n≤x

anf(n) =
∑

2<p≤x

log p
log p

= π(x)− 1,

επομένως

π(x)− 1 = θ(x)
1

logx
− θ(2)

1

log 2
−
∫ x

2
θ(t) f ′(t) dt.

Επειδή θ(2) = log 2, ο όρος θ(2)/ log 2 είναι 1 και απαλείφεται με το −1 αριστερά. Επίσης

f ′(t) =

(
1

log t

)′
= − 1

t(log t)2
.

Άρα

π(x) =
θ(x)

logx
+

∫ x

2

θ(t)

t(log t)2
dt.

Θεώρημα 1.5. Για κάθε x ≥ 1 ισχύει

0 ≤ ψ(x)− θ(x) ≤
√
x(logx)2

2 log 2
. (2)

Ειδικότερα, για x ≥ 2 έχουμε

ψ(x) = θ(x) +O
(√
x(logx)2

)
.
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Απόδειξη. Η ανισότητα ψ(x)− θ(x) ≥ 0 είναι άμεση, αφού η ψ περιλαμβάνει όλους τους όρους
της θ και επιπλέον τις συνεισφορές από πρώτες δυνάμεις pk με k ≥ 2.

Για το άνω φράγμα, ξεκινάμε από τον ορισμό

ψ(x) =
∑
n≤x

Λ(n) =
∑
pk≤x

Λ(pk).

Ομαδοποιώντας ως προς τον εκθέτη k παίρνουμε

ψ(x) =
∑
k≥1

∑
p≤x1/k

log p =
∑
k≥1

θ
(
x1/k

)
.

Το άθροισμα ως προς k είναι στην πράξη πεπερασμένο, διότι θ(y) = 0 όταν y < 2 (δεν υπάρχουν
πρώτοι ≤ 1). Άρα θ(x1/k) = 0 για x1/k < 2, δηλαδή για

k >
logx
log 2

.

Συνεπώς
ψ(x)− θ(x) =

∑
k≥2

θ(x1/k) =
∑

2≤k≤logx/ log 2

θ(x1/k).

Για k ≥ 2 έχουμε x1/k ≤
√
x, άρα (μονοτονία της θ)

θ(x1/k) ≤ θ(
√
x) για κάθε k ≥ 2.

Επομένως

ψ(x)− θ(x) ≤ θ(
√
x) · logx

log 2
.

Τέλος,
θ(
√
x) =

∑
p≤

√
x

log p ≤
∑
p≤

√
x

log
√
x ≤

√
x log

√
x.

Άρα

ψ(x)− θ(x) ≤
√
x log

√
x · logx

log 2
=

√
x · (logx)

2

2 log 2
,

που είναι ακριβώς το (2).

Λήμμα 1.6. Για x ≥ 3 ισχύει∫ x

2

dt

log t
≤ C1x

logx
,

∫ x

2

dt

(log t)2
≤ C2x

(logx)2
.

Απόδειξη. Θέτουμε u =
√
x. Για t ∈ [u, x] έχουμε log t ≥ logu = 1

2 logx. Άρα∫ x

2

dt

log t
=

∫ u

2

dt

log t
+

∫ x

u

dt

log t
≤ u− 2

log 2
+

x− u
1
2 logx

= O
(√

x+
x

logx

)
= O

(
x

logx

)
.

Ομοίως, ∫ x

2

dt

(log t)2
≤ u+

x− u

(12 logx)2
�

√
x+

x

(logx)2
� x

(logx)2
.
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Θεώρημα 1.7. Οι παρακάτω προτάσεις είναι ισοδύναμες:

π(x) ∼ x

logx
, (3)

θ(x) ∼ x, (4)
ψ(x) ∼ x. (5)

Απόδειξη. Από το Θεώρημα 1.4 έχουμε, για x ≥ 2,

θ(x) = π(x) logx−
∫ x

2

π(t)

t
dt.

Διαιρώντας με x και γράφοντας π(x) logx
x = π(x)

x/ logx παίρνουμε

θ(x)

x
=

π(x)

x/ logx
− 1

x

∫ x

2

π(t)

t
dt. (6)

(3) =⇒ (4). Υποθέτουμε ότι π(x) ∼ x/ logx. Τότε υπάρχει σταθερά C > 0 ώστε για t μεγάλα

π(t) ≤ C
t

log t
.

Άρα
1

x

∫ x

2

π(t)

t
dt� 1

x

∫ x

2

dt

log t
� 1

logx
.

Συνεπώς
1

x

∫ x

2

π(t)

t
dt −→ 0 (x→ ∞).

Επιστρέφοντας στηv (6) και χρησιμοποιώντας ότι π(x)
x/ logx → 1, παίρνουμε θ(x)

x → 1, δηλαδή
θ(x) ∼ x.
(4) =⇒ (3). Από το Θεώρημα 1.4έχουμε επίσης

π(x) =
θ(x)

logx
+

∫ x

2

θ(t)

t(log t)2
dt,

άρα
π(x)

x/ logx
=
θ(x)

x
+
logx
x

∫ x

2

θ(t)

t(log t)2
dt. (7)

Υποθέτουμε θ(x) ∼ x. Τότε υπάρχει σταθερά C > 0 ώστε για t μεγάλα θ(t) ≤ Ct. Έτσι

logx
x

∫ x

2

θ(t)

t(log t)2
dt� logx

x

∫ x

2

dt

(log t)2
� 1

logx
.

Στην (7) λοιπόν, ο δεύτερος όρος τείνει στο 0 και ο πρώτος τείνει στο 1, οπότε π(x)
x/ logx → 1,

δηλαδή π(x) ∼ x/ logx.
(5)⇐⇒ (4). Από το Θεώρημα 1.5 ισχύει 0 ≤ ψ(x)− θ(x) ≤ C

√
x(logx)2 για x ≥ 2. Διαιρώντας

με x παίρνουμε

lim
x→∞

(
ψ(x)

x
− θ(x)

x

)
= 0.

Άρα θ(x) ∼ x αν και μόνο αν ψ(x) ∼ x.
Συμπεραίνουμε ότι (3), (4), (5) είναι ισοδύναμες.
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Εφόσον θέλουμε να αποδείξουμε ότι ψ(x) ∼ x, κάνουμε την πρώτη βασική αναγωγή, με βάση
το παρακάτω Θεώρημα.

Θεώρημα 1.8 (Korevaar–Zagier). Έστω (an)n≥1 ακολουθία με an ≥ 0 και ορίζουμε, για x ≥ 1,

A(x) :=
∑
n≤x

an.

Αν το γενικευμένο ολοκλήρωμα ∫ ∞

1

A(x)− x

x2
dx

συγκλίνει, τότε A(x) ∼ x, καθώς x→ ∞.

Απόδειξη. Θέτουμε

I(y) =

∫ ∞

y

A(t)− t

t2
dt.

Η υπόθεση ότι
∫∞
1

A(t)−t
t2

dt συγκλίνει ισοδυναμεί με I(y) → 0. Θα αποδείξουμε ότι A(x)/x→ 1.
Υποθέτουμε, προς άτοπο, ότι lim supx→∞A(x)/x > 1. Τότε υπάρχει λ > 1 και άπειρα x με

A(x) ≥ λx. Για τέτοιο x και κάθε t ∈ [x, λx] ισχύει A(t) ≥ A(x) ≥ λx, άρα

I(x)− I(λx) =

∫ λx

x

A(t)− t

t2
dt ≥

∫ λx

x

λx− t

t2
dt.

Με την αλλαγή μεταβλητής t = vx παίρνουμε∫ λx

x

λx− t

t2
dt =

∫ λ

1

λ− v

v2
dv = λ− 1− logλ > 0.

Όμως I(x) → 0 και I(λx) → 0, άρα I(x)−I(λx) → 0, άτοπο. Ανάλογα αποκλείεται και η σχέση
lim infx→∞A(x)/x < 1. Άρα A(x)/x→ 1.

1.2 Ένα φυσικό αντικείμενο: Mellin–τύπου ολοκλήρωμα

Για σ > 1 ορίζουμε

F (σ) :=

∫ ∞

1

ψ(x)− x

xσ+1
dx. (8)

Τυπικά,

F (1) =

∫ ∞

1

ψ(x)− x

x2
dx,

άρα το ερώτημα είναι αν το F (σ) μπορεί να «κατέβει» μέχρι σ = 1 με πεπερασμένη τιμή. Προς
το παρόν εργαζόμαστε μόνο στο σ > 1, όπου όλα είναι απολύτως νόμιμα.

1.3 Η σύνδεση με την συνάρτηση Mangoldt

Λήμμα 1.9. Για κάθε σ > 1 ισχύει∫ ∞

1

ψ(x)

xσ+1
dx =

1

σ

∞∑
n=1

Λ(n)

nσ
.
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Απόδειξη. Από τον ορισμό ψ(x) =
∑

n≤x Λ(n) και επειδή Λ(n) ≥ 0, μπορούμε να εφαρμόσουμε
Tonelli και να ανταλλάξουμε άθροισμα–ολοκλήρωμα:

∫ ∞

1

ψ(x)

xσ+1
dx =

∫ ∞

1

∑
n≤x

Λ(n)

x−σ−1 dx

=

∞∑
n=1

Λ(n)

∫ ∞

1
1{n≤x} x

−σ−1 dx =

∞∑
n=1

Λ(n)

∫ ∞

n
x−σ−1 dx.

Για σ > 0 έχουμε ∫ ∞

n
x−σ−1 dx =

1

σ
n−σ,

οπότε παίρνουμε το ζητούμενο.

Επιπλέον για κάθε σ > 1 ισχύει∫ ∞

1

x

xσ+1
dx =

∫ ∞

1
x−σ dx =

1

σ − 1
,

επομένως παίρνουμε την ακόλουθη ισότητα.

Πρόταση 1.10. Για κάθε σ > 1 ισχύει

F (σ) =
1

σ

∞∑
n=1

Λ(n)

nσ
− 1

σ − 1
. (9)

Άρα το πρόβλημά μας μεταφέρθηκε φυσικά στη μελέτη της σειράς Dirichlet

∞∑
n=1

Λ(n)

nσ
.

1.4 Σύνδεση με την συνάρτηση ζ

Εισάγουμε την συνάρτηση ζ ως σειρά Dirichlet:

ζ(σ) :=
∞∑
n=1

1

nσ
(σ > 1). (10)

Λήμμα 1.11 (Παραγώγιση της ζ για σ > 1). Για κάθε σ > 1 ισχύει

ζ ′(σ) = −
∞∑
n=1

logn
nσ

.

Απόδειξη. Για κάθε ε > 0 η σειρά
∑

n≥1
logn
n1+ε συγκλίνει, οπότε η σειρά των παραγώγων συγκλίνει

ομοιόμορφα στο [1 + ε,∞) (Weierstrass M–test). Άρα επιτρέπεται η παραγώγιση της (10) για
σ > 1.

Το κρίσιμο αριθμητικό γεγονός είναι μια ταυτότητα για τη von Mangoldt συνάρτηση.

Λήμμα 1.12 (Ταυτότητα διαιρετών για Λ). Για κάθε ακέραιο n ≥ 1 ισχύει

logn =
∑
d|n

Λ(d). (11)
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Απόδειξη. Αν n =
∏m

j=1 p
αj

j , τότε logn =
∑m

j=1 αj log pj . Οι διαιρέτες d του n με Λ(d) 6= 0 είναι
ακριβώς οι δυνάμεις pkj με 1 ≤ k ≤ αj , άρα

∑
d|n

Λ(d) =
m∑
j=1

αj∑
k=1

log pj =
m∑
j=1

αj log pj = logn.

Λήμμα 1.13. Για κάθε σ > 1 η σειρά
∑
n≥1

Λ(n)

nσ
συγκλίνει απολύτως.

Απόδειξη. Ισχύει Λ(n) ≤ logn, άρα

∞∑
n=1

|Λ(n)|
nσ

≤
∞∑
n=1

logn
nσ

<∞ (σ > 1).

Θεώρημα 1.14. Για κάθε σ > 1 ισχύει

−ζ
′(σ)

ζ(σ)
=

∞∑
n=1

Λ(n)

nσ
. (12)

Απόδειξη. Από το Λήμμα 1.11 έχουμε

−ζ ′(σ) =
∞∑
n=1

logn
nσ

.

Χρησιμοποιούμε την ταυτότητα (11):

−ζ ′(σ) =
∞∑
n=1

1

nσ

∑
d|n

Λ(d).

Για σ > 1 όλοι οι όροι είναι μη αρνητικοί, οπότε (Tonelli) αναδιατάσσουμε:

−ζ ′(σ) =
∞∑
d=1

Λ(d)
∑
n≥1
d|n

1

nσ
=

∞∑
d=1

Λ(d)
∞∑

m=1

1

(dm)σ

=

( ∞∑
d=1

Λ(d)

dσ

)( ∞∑
m=1

1

mσ

)
=

( ∞∑
d=1

Λ(d)

dσ

)
ζ(σ).

Επειδή ζ(σ) > 0 για σ > 1, διαιρούμε και παίρνουμε την (12).

1.5 Συμπέρασμα

Συνδυάζοντας την Πρόταση 1.10 με το Θεώρημα 1.14 παίρνουμε, για κάθε σ > 1,

F (σ) = − 1

σ

ζ ′(σ)

ζ(σ)
− 1

σ − 1
. (13)

Ξεκινήσαμε από τη ψ και το κριτήριο Korevaar–Zagier, και φτάσαμε στο ότι η μελέτη της
σύγκλισης του (??) ισοδυναμεί με το να καταλάβουμε τη συμπεριφορά του δεξιού μέλους του
(13) καθώς σ ↓ 1.
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Γιατί αναγκαστικά θα περάσουμε σε μιγαδική ανάλυση.

Παρατήρηση 1.15 (Γιατί δεν αρκεί να μείνουμε στο σ ∈ R). Μέχρι εδώ δουλέψαμε μόνο με
πραγματικά σ > 1. Το επόμενο βήμα θα ήταν να περάσουμε στο

F (1) =

∫ ∞

1

ψ(x)− x

x2
dx,

αλλά αυτό δεν προκύπτει μόνο από τη γνώση του F (σ) για σ > 1. Πράγματι, αν πάρουμε

E(x) := x sin(logx), FE(σ) :=

∫ ∞

1

E(x)

xσ+1
dx =

∫ ∞

1

sin(logx)
xσ

dx,

με την αλλαγή μεταβλητής u = logx προκύπτει

FE(σ) =

∫ ∞

0
e−(σ−1)u sinu du =

1

(σ − 1)2 + 1
,

άρα limσ↓1 FE(σ) = 1. Πράγματι, ένας γρήγορος τρόπος για τον τελευταίο υπολογισμό είναι∫ ∞

0
e−(σ−1)u sinu du = =

∫ ∞

0
e−(σ−1)ueiu du = =

∫ ∞

0
e−(σ−1−i)u du.

Για σ > 1 έχουμε <(σ − 1− i) = σ − 1 > 0, άρα∫ ∞

0
e−(σ−1−i)u du =

1

σ − 1− i
.

Επομένως ∫ ∞

0
e−(σ−1)u sinu du = = 1

σ − 1− i
= =

(
σ − 1 + i

(σ − 1)2 + 1

)
=

1

(σ − 1)2 + 1
.

Ωστόσο
FE(1) =

∫ ∞

1

sin(logx)
x

dx =

∫ ∞

0
sinu du,

που δεν συγκλίνει. Δηλαδή: ακόμη και πολύ καλή συμπεριφορά για όλα τα σ > 1 (και μάλιστα
ύπαρξη ορίου στο σ ↓ 1) δεν εγγυάται σύγκλιση στο σ = 1.

Η σωστή πρόσθετη πληροφορία είναι να ελέγξουμε την οριακή ευθεία <(s) = 1, δηλαδή τι
συμβαίνει για s = σ + it. Στο παραπάνω παράδειγμα, ο αντίστοιχος μετασχηματισμός είναι

FE(s) =
1

(s− 1)2 + 1
,

που έχει πόλους στα s = 1 ± i, δηλαδή πάνω στην <(s) = 1. Αυτές οι ανωμαλίες αντιστοιχούν
σε ταλαντώσεις και είναι ακριβώς αυτό που πρέπει να αποκλείσουμε στην περίπτωση της ζ.
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2 Επέκταση του Ορισμού της συνάρτησης ζ

Λήμμα 2.1. Έστω (an)n≥1 με an ∈ C και έστω

F (s) :=

∞∑
n=1

an
ns
, s = σ + it.

Αν υπάρχει σ0 ∈ R τέτοιο ώστε
∑∞

n=1
|an|
nσ0 < ∞, τότε για κάθε σ1 > σ0 η σειρά συγκλίνει

απολύτως και ομοιόμορφα στο ημιεπίπεδο <(s) ≥ σ1. Επιπλέον, η F είναι ολόμορφη στο
<(s) > σ0 και

F ′(s) = −
∞∑
n=1

an logn
ns

,

με ομοιόμορφη σύγκλιση σε κάθε <(s) ≥ σ1 > σ0.

Απόδειξη. Για s με <(s) = σ ≥ σ1 έχουμε∣∣∣an
ns

∣∣∣ = |an|
nσ

≤ |an|
nσ1

.

Επειδή
∑

n≥1
|an|
nσ1 <∞, τοM -κριτήριο του Weierstrass δίνει ομοιόμορφη σύγκλιση στο <(s) ≥ σ1.

Άρα η F είναι συνεχής εκεί.
Για την ολoμορφία, παρατηρούμε ότι κάθε όρος s 7→ ann

−s = ane
−s logn είναι ολόμορφη και

για σ ≥ σ1 ισχύει ∣∣∣∣an lognns

∣∣∣∣ = |an| logn
nσ

≤ |an| logn
nσ1

.

Αλλά για κάθε ε > 0 ισχύει logn ≤ nε για n αρκετά μεγάλο, οπότε (π.χ. παίρνοντας ε =

(σ1 − σ0)/2) η
∑ |an| logn

nσ1 συγκλίνει. Άρα η σειρά των παραγώγων συγκλίνει ομοιόμορφα όταν
<(s) ≥ σ1. Από το Θεώρημα 5.7 συμπεραίνουμε ότι F είναι ολόμορφη και ότι επιτρέπεται
παραγωγίση όρο-όρο.

Πρόταση 2.2. Για <(s) > 1 ορίζουμε

ζ(s) =
∞∑
n=1

1

ns
.

Τότε η σειρά συγκλίνει απολύτως για <(s) > 1, ορίζει ολόμορφη συνάρτηση στο {s : <(s) > 1},
και για κάθε <(s) > 1 ισχύει

ζ ′(s) = −
∞∑
n=1

logn
ns

,

με ομοιόμορφη σύγκλιση σε κάθε ημιεπίπεδο <(s) ≥ 1 + δ (δ > 0).

Απόδειξη. Εφαρμόζουμε το Λήμμα 2.1 με an ≡ 1 και σ0 = 1.

Παρατήρηση 2.3. Θέτουμε H1 := {s ∈ C : <(s) > 1}. Η σειρά

∞∑
n=1

1

ns

δεν συγκλίνει ομοιόμορφα στο H1.
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Πράγματι, έστω προς άτοπο ότι συγκλίνει ομοιόμορφα στο H1. Τότε, από το κριτήριο Cauchy
για ομοιόμορφη σύγκλιση, για ε = 1 υπάρχει N ∈ N τέτοιο ώστε για κάθε ℓ > k ≥ N και κάθε
s ∈ H1 να ισχύει ∣∣∣∣∣

ℓ∑
n=k

1

ns

∣∣∣∣∣ < 1.

Ειδικότερα, αυτό ισχύει για κάθε πραγματικό s > 1 (αφού (1,∞) ⊂ H1). Για πραγματικό s > 1
όλοι οι όροι είναι θετικοί, άρα

ℓ∑
n=k

1

ns
< 1 (ℓ > k ≥ N, s > 1).

Αφήνοντας τώρα s → 1+, και χρησιμοποιώντας ότι για κάθε σταθερά ℓ, k έχουμε 1
ns → 1

n ,
παίρνουμε

ℓ∑
n=k

1

n
≤ 1 (ℓ > k ≥ N).

Τέλος, αφήνοντας ℓ→ ∞ καταλήγουμε ότι

∞∑
n=k

1

n
≤ 1 (k ≥ N),

άτοπο, επειδή η αρμονική σειρά αποκλίνει. Άρα η αρχική υπόθεση είναι ψευδής.

Πρόταση 2.4. Θέτουμε

F (s) :=

∞∑
n=1

Λ(n)

ns
.

Τότε η F είναι καλά ορισμένη και ολόμορφη στο <(s) > 1, και

F ′(s) = −
∞∑
n=1

Λ(n) logn
ns

,

με ομοιόμορφη σύγκλιση σε κάθε <(s) ≥ 1 + δ.

Απόδειξη. Χρησιμοποιούμε ότι 0 ≤ Λ(n) ≤ logn για κάθε n ≥ 2. Για σ > 1 έχουμε

∞∑
n=2

|Λ(n)|
nσ

≤
∞∑
n=2

logn
nσ

<∞,

άρα εφαρμόζουμε το Λήμμα 2.1 με σ0 = 1.

Πρόταση 2.5. Θεωρούμε το ημιεπίπεδο Ω := {s ∈ C : <(s) > 1}. Υποθέτουμε ότι για κάθε
πραγματικό s > 1 έχει ήδη αποδειχθεί η ταυτότητα

−ζ ′(s) = ζ(s)

∞∑
n=1

Λ(n)

ns
.

Τότε η ίδια ταυτότητα ισχύει για κάθε μιγαδικό s ∈ Ω.
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Απόδειξη. Από την Πρόταση 2.2 η ζ και η ζ ′ είναι ολόμορφες στο Ω. Από την Πρόταση 2.4 η

F (s) :=

∞∑
n=1

Λ(n)

ns

είναι ολόμορφη στο Ω. Άρα και το γινόμενο ζ(s)F (s) είναι ολόμορφη συνάρτηση στο Ω.
Ορίζουμε την ολόμορφη συνάρτηση

H(s) := −ζ ′(s)− ζ(s)F (s) (s ∈ Ω).

Από την υπόθεση, για κάθε πραγματικό s > 1 ισχύει H(s) = 0. Το σύνολο (1,∞) ⊂ Ω έχει
σημείο συσσώρευσης εντός του Ω (π.χ. στο s = 2), άρα από την Αρχή Αναλυτικής Συνέχισης
(Identity Theorem) συμπεραίνουμε ότι H ≡ 0 σε όλο το Ω. Δηλαδή

−ζ ′(s) = ζ(s)
∞∑
n=1

Λ(n)

ns
,

για κάθε s ∈ Ω.

Λήμμα 2.6. Έστω Ω ⊂ C ανοικτό, s0 ∈ Ω και f : Ω → C ολόμορφη. Υποθέτουμε ότι f 6≡ 0 και
ότι f(s0) = 0. Τότε υπάρχει ακέραιος m ≥ 1 και ολόμορφη συνάρτηση h σε κάποια γειτονιά
του s0 με h(s0) 6= 0 τέτοια ώστε

f(s) = (s− s0)
mh(s)

για s κοντά στο s0. Ο m είναι μοναδικός και λέγεται τάξη (ή πολλαπλότητα) του μηδενικού
στο s0.

Απόδειξη. Επειδή f είναι ολόμορφη, υπάρχει r > 0 και ανάπτυγμα Taylor

f(s) =

∞∑
n=0

an(s− s0)
n (|s− s0| < r).

Από f(s0) = 0 παίρνουμε a0 = 0. Επειδή f 6≡ 0, δεν είναι όλοι οι συντελεστές μηδέν, άρα
υπάρχει ελάχιστος m ≥ 1 με am 6= 0. Τότε

f(s) =
∞∑

n=m

an(s− s0)
n = (s− s0)

m
∞∑
k=0

am+k(s− s0)
k.

Θέτουμε

h(s) :=

∞∑
k=0

am+k(s− s0)
k.

Η h είναι ολόμορφη στο |s− s0| < r και h(s0) = am 6= 0. Η μοναδικότητα του m προκύπτει από
τη μοναδικότητα του Taylor αναπτύγματος.

Θεώρημα 2.7. Για κάθε s με <(s) > 1 ισχύει ζ(s) 6= 0.

Απόδειξη. Έστω προς άτοπο ότι υπάρχει s0 με <(s0) > 1 και ζ(s0) = 0. Η ζ είναι ολόμορφη στο
<(s) > 1, άρα το s0 είναι μηδενικό κάποιας τάξης m ≥ 1, δηλαδή υπάρχει ολόμορφη h κοντά
στο s0 με h(s0) 6= 0 ώστε

ζ(s) = (s− s0)
mh(s).
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Τότε
ζ ′(s) = m(s− s0)

m−1h(s) + (s− s0)
mh′(s),

οπότε η ζ ′(s) έχει μηδενικό ακριβώς τάξηςm−1 στο s0. Ισοδύναμα,−ζ ′(s) έχει μηδενικό ακριβώς
τάξης m− 1 στο s0.

Από την Πρόταση 2.5 έχουμε στο <(s) > 1 την ταυτότητα

−ζ ′(s) = ζ(s)F (s), F (s) :=
∑
n≥1

Λ(n)

ns
.

Η F είναι ολόμορφη στο <(s) > 1 (από απόλυτη σύγκλιση), άρα κοντά στο s0 είναι πεπερασμένη.
Επομένως το γινόμενο ζ(s)F (s) έχει μηδενικό τάξης τουλάχιστον m στο s0, αφού η ζ έχει τάξη
m εκεί.

Άρα το αριστερό μέλος −ζ ′(s) θα έπρεπε να έχει μηδενικό τάξης ≥ m στο s0, που αντιφάσκει
με το ότι έχει τάξη ακριβώς m− 1. Άτοπο. Συνεπώς ζ(s) 6= 0 για <(s) > 1.

2.1 Μερομορφική συνέχεια της ζ(s) στο <(s) > 0

Θεώρημα 2.8. Για s ∈ C με σ = Re(s) > 1 ισχύει

ζ(s) =
s

s− 1
− s

∫ ∞

1

{t}
ts+1

dt.

Απόδειξη. Απ τον τύπο αθροίσεως του Euler, παίρνουμε∑
n≤x

n−s = 1 +

∫ x

1
t−s dt+

∫ x

1
{t} (t−s)′ dt− {x}

xs
.

Υπολογίζοντας τα παραπάνω ολοκληρώματα καταλήγουμε στην ισότητα

∑
n≤x

n−s =
x1−s

1− s
+

s

s− 1
− {x}

xs
− s

∫ x

1

{t}
ts+1

dt.

Περνώντας στο όριο x → ∞ (και χρησιμοποιώντας ότι σ > 1 ώστε x1−s → 0 και {x} /xs → 0),
παίρνουμε το ζητούμενο.

Θεώρημα 2.9. Η σχέση του Θεωρήματος 2.8 δίνει αναλυτική συνέχιση της ζ(s) στο ημιεπίπεδο
σ > 0, με απλό πόλο στο s = 1 και υπόλοιπο 1.

Απόδειξη. Εφόσον η συνάρτηση

s 7−→ s

s− 1
=

1

s− 1
+ 1

είναι αναλυτική σε κάθε σημείο του σ > 0 εκτός από έναν απλό πόλο στο s = 1 με υπόλοιπο 1,
αρκεί να δείξουμε ότι η συνάρτηση

f(s) =

∫ ∞

1

{t}
ts+1

dt

είναι αναλυτική στο σ > 0.
Για κάθε m ∈ N ορίζουμε

fm(s) =

∫ m

1

{t}
ts+1

dt για s ∈ C με σ > 0.
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Επειδή το ολοκληρωτέο είναι αναλυτική συνάρτηση του s, δεν είναι δύσκολο να δούμε ότι fm
είναι αναλυτική στο ημιεπίπεδο σ > 0.

Εναλλακτικά, γράφουμε το fm(s) ως δυναμοσειρά. Παρατηρούμε ότι

fm(s) =

∫ m

1
{t} e−(s+1) log t dt =

∫ m

1

∞∑
n=0

{t} (− log t)n(s+ 1)n

n!
dt,

και ότι
∞∑
n=0

∣∣∣∣{t} (− log t)n(s+ 1)n

n!

∣∣∣∣ ≤ ∞∑
n=0

(
| log t|(|s|+ 1)

)n
n!

= e| log t|(|s|+1).

Άρα ∫ m

1

∞∑
n=0

∣∣∣∣{t} (− log t)n(s+ 1)n

n!

∣∣∣∣ dt ≤ ∫ m

1
t|s|+1 dt <∞.

Με το θεώρημα Fubini, μπορούμε να αλλάξουμε τη σειρά ολοκλήρωσης και αθροίσεως και παίρ-
νουμε

fm(s) =

∞∑
n=0

(s+ 1)n

n!

∫ m

1
{t} (− log t)n dt,

που είναι δυναμοσειρά ως προς το s.
Για να δούμε ότι fm → f ομοιόμορφα σε κάθε συμπαγές υποσύνολο του σ > 0, θεωρούμε

το ημιεπίπεδο σ ≥ δ και παίρνουμε

|fm(s)− f(s)| ≤
∫ ∞

m

1

tσ+1
dt� 1

σmσ
≤ 1

δmδ
.

Άρα, αν ε, δ > 0 δοθούν, μπορούμε να διαλέξουμε M > 0 που εξαρτάται από ε, δ αλλά όχι από
το s (π.χ. M = (δε)−1/δ) τέτοιο ώστε |fm(s) − f(s)| < ε για κάθε m > M και κάθε s ∈ C με
σ ≥ δ. Αυτό ολοκληρώνει την απόδειξη.

Παράρτημα

3 Βασικά για μιγαδικούς αριθμούς και σύνολα στο C

Ορισμός 3.1. Κάθε s ∈ C γράφεται μοναδικά ως s = σ + it, όπου σ = Re(s) ∈ R και t =
Im(s) ∈ R. Το μέτρο του s είναι |s| =

√
σ2 + t2.

Ορισμός 3.2 (Δίσκοι και ημιεπίπεδα). Για s0 ∈ C και r > 0 θέτουμε

∆(s0, r) = {s ∈ C : |s− s0| < r}.

Για σ0 ∈ R θέτουμε
Hσ0 = {s ∈ C : Re(s) > σ0}.

Πρόταση 3.3 (Ανισότητες για το μέτρο). Για z, w ∈ C ισχύουν:

|z + w| ≤ |z|+ |w| , |zw| = |z| |w| , |z/w| = |z| / |w| (w 6= 0).
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Re

Im

s0

s

r

(α) Ο
δίσκος ∆(s0, r).

Re

Im

σ0

s0 sr

Re(s) = σ0

(β) Το Hσ0 ,
με r = Re(s)− σ0 > 0.

Σχήμα 1: Δίσκος και δεξί ημιεπίπεδο.

3.1 Σύγκλιση στο C

Ορισμός 3.4 (Σύγκλιση ακολουθίας στο C). Λέμε ότι μια ακολουθία (zn)n≥1 ⊂ C συγκλίνει στο
z ∈ C (και γράφουμε zn → z) αν

∀ε > 0 ∃N ώστε ∀n ≥ N, |zn − z| < ε.

Πρόταση 3.5 (Κανόνες ορίων). Αν zn → z και wn → w στο C, τότε:

zn + wn → z + w, znwn → zw, |zn| → |z|.

Αν επιπλέον w 6= 0 και wn 6= 0 για n μεγάλα, τότε

zn
wn

→ z

w
.

3.2 Σειρές μιγαδικών αριθμών

Ορισμός 3.6 (Σειρά και μερικά αθροίσματα). Για (zn)n≥0 ⊂ C θέτουμε SN =
∑N

n=0 zn. Λέμε
ότι
∑∞

n=0 zn συγκλίνει αν η ακολουθία (SN ) συγκλίνει σε κάποιο S ∈ C.

Πρόταση 3.7 (Κριτήριο Cauchy). Η σειρά
∑∞

n=0 zn συγκλίνει αν και μόνο αν:

∀ε > 0 ∃N ώστε ∀m > n ≥ N,

∣∣∣∣∣
m∑

k=n+1

zk

∣∣∣∣∣ < ε.

Ορισμός 3.8 (Απόλυτη σύγκλιση). Λέμε ότι
∑∞

n=0 zn συγκλίνει απολύτως αν
∑∞

n=0 |zn| <∞.

Θεώρημα 3.9 (Απόλυτη σύγκλιση ⇒ σύγκλιση). Αν
∑∞

n=0 |zn| <∞, τότε η
∑∞

n=0 zn συγκλίνει
και ∣∣∣∣∣

∞∑
n=N+1

zn

∣∣∣∣∣ ≤
∞∑

n=N+1

|zn|.

3.3 Ομοιόμορφη σύγκλιση

Ορισμός 3.10 (Ομοιόμορφη σύγκλιση). Έστω A ⊆ C και fn, f : A → C. Λέμε ότι fn → f
ομοιόμορφα στο A αν

∀ε > 0 ∃N ώστε ∀n ≥ N ∀s ∈ A, |fn(s)− f(s)| < ε.
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Παρατήρηση 3.11. Η ομοιόμορφη σύγκλιση fn → f στο A ισοδυναμεί με

sup
s∈A

|fn(s)− f(s)| −−−→
n→∞

0.

Θεώρημα 3.12 (ΚριτήριοM του Weierstrass). Έστω fn : A→ C καιMn ≥ 0 ώστε |fn(s)| ≤Mn

για κάθε s ∈ A. Αν
∑∞

n=1Mn <∞, τότε
∑∞

n=1 fn συγκλίνει ομοιόμορφα στο A.

4 Η εκθετική και μιγαδικές δυνάμεις

Ορισμός 4.1 (Εκθετική). Η exp : C → C ορίζεται από

ez = exp(z) =
∞∑
n=0

zn

n!
.

Παρατήρηση 4.2 (Σύγκλιση της εκθετικής). Για zn =
zn

n!
ισχύει

∣∣∣ zn+1

zn

∣∣∣ = |z|
n+1 → 0, άρα η σειρά

της εκθετικής συγκλίνει απολύτως για κάθε z ∈ C.

Πρόταση 4.3 (Βασικές ιδιότητες). Για z, w ∈ C ισχύουν ez+w = ezew, e0 = 1, και

|ez| = eRe(z).

Επίσης eit = cos t+ i sin t για t ∈ R.

Ορισμός 4.4 (Μιγαδική δύναμη ys για y > 0). Για y > 0 και s ∈ C θέτουμε

ys := es ln y,

όπου ln y είναι ο πραγματικός λογάριθμος του θετικού y.

5 Ολόμορφες συναρτήσεις και αναλυτική συνέχιση

5.1 Τοπολογικές Έννοιες

Ορισμός 5.1 (Ανοικτό/κλειστό). Ω ⊆ C είναι ανοικτό αν για κάθε z ∈ Ω υπάρχει r > 0 με
∆(z, r) ⊂ Ω. F είναι κλειστό αν C \ F είναι ανοικτό.

Ορισμός 5.2 (Συμπαγές). Ένα K ⊆ C λέγεται συμπαγές αν είναι κλειστό και φραγμένο.

Ορισμός 5.3 (Συνεκτικό). Ω λέγεται συνεκτικό αν δεν γράφεται ως ένωση δύο ξένων, μη κενών,
ανοικτών (στη σχετική τοπολογία) συνόλων.

Ορισμός 5.4 (Ολόμορφη). Έστω Ω ⊆ C ανοικτό. Μία f : Ω → C λέγεται ολόμορφη αν για κάθε
s ∈ Ω υπάρχει

f ′(s) = lim
h→0

f(s+ h)− f(s)

h
.

Πρόταση 5.5 (Αλγεβρικές πράξεις). Αν f, g είναι ολόμορφες στο Ω, τότε f + g και fg είναι
ολόμορφες. Αν επιπλέον g(s) 6= 0 σε Ω, τότε και f/g είναι ολόμορφη.

Θεώρημα 5.6 (Weierstrass: όριο ολόμορφων). Έστω Ω ανοικτό και fn : Ω → C ολόμορφες. Αν
fn → f ομοιόμορφα σε κάθε συμπαγές K ⊆ Ω, τότε f είναι ολόμορφη στο Ω.

Θεώρημα 5.7 (Θεώρημα Weierstrass: όριο ολόμορφων και σύγκλιση παραγώγων). Έστω Ω ⊂ C
ανοικτό και (fn)n≥1 ακολουθία ολόμορφων συναρτήσεων fn : Ω → C. Υποθέτουμε ότι:
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1. fn → f ομοιόμορφα σε κάθε συμπαγές K ⊂ Ω,

2. f ′n → g ομοιόμορφα σε κάθε συμπαγές K ⊂ Ω.

Τότε η f είναι ολόμορφη στο Ω, ισχύει f ′ = g στο Ω, και μάλιστα για κάθε k ≥ 1 έχουμε
f
(k)
n → f (k) ομοιόμορφα σε κάθε συμπαγές.

Θεώρημα 5.8. Έστω Ω ⊆ C ανοικτό και {fn}∞n=1 ακολουθία αναλυτικών συναρτήσεων στο
Ω. Υποθέτουμε ότι υπάρχει f : Ω → C τέτοια ώστε fn → f ομοιόμορφα σε κάθε συμπαγές
υποσύνολο K του Ω. Τότε, η f είναι αναλυτική στο Ω και ισχύει ότι f ′n → f ′ ομοιόμορφα σε
κάθε συμπαγές υποσύνολο K του Ω.

Απόδειξη. Έστω s ∈ Ω. Αφού το Ω είναι ανοικτό, υπάρχει δ > 0 τέτοιο ώστε ∆(s, δ) ⊆ Ω. Οι fn
είναι συνεχείς στο Ω, άρα και στον κλειστό δίσκο∆(s, δ). Αφού fn → f ομοιόμορφα στον∆(s, δ),
έπεται ότι η f είναι συνεχής στον ∆(s, δ). Ειδικότερα, η f είναι συνεχής στο s. Συμπεραίνουμε
έτσι ότι η f είναι συνεχής στο Ω.

Έστω τώρα γ τριγωνική καμπύλη τέτοια ώστε η εικόνα της γ∗ καθώς και το εσωτερικό της
τρίγωνο T (γ∗) να περιέχονται στο Ω. Αφού κάθε fn είναι αναλυτική στο Ω, για κάθε n ∈ N
έχουμε ∫

γ
fn(s) ds = 0.

Αφού fn → f ομοιόμορφα στο συμπαγές σύνολο γ∗, έχουμε∣∣∣∣∫
γ
fn(s) ds−

∫
γ
f(s) ds

∣∣∣∣ ≤ max
s∈γ∗

|fn(s)− f(s)| · ℓ(γ) −→ 0,

(όπου ℓ(γ) είναι το μήκος της γ). Συνεπώς,∫
γ
f(s) ds = 0.

Αφού η f είναι και συνεχής στο Ω, από το Θεώρημα Morera βλέπουμε ότι η f είναι αναλυτική
στο Ω.

Θεωρούμε τώρα ανοικτό δίσκο∆(s0, δ0) ώστε∆(s0, δ0) ⊆ Ω και έστω C(s0, δ0) η περιφέρεια
του δίσκου. Από τον τύπο του Cauchy έχουμε

f ′n(s) =
1

2πi

∫
C(s0,δ0)

fn(z)

(z − s)2
dz για κάθε s ∈ ∆(s0, δ0),

και
f ′(s) =

1

2πi

∫
C(s0,δ0)

f(z)

(z − s)2
dz για κάθε s ∈ ∆(s0, δ0).

Παρατηρούμε ότι αν s ∈ ∆
(
s0, δ0/2

)
, τότε |z − s| ≥ δ0/2 για κάθε z ∈ C(s0, δ0), άρα

|f ′n(s)−f ′(s)| ≤
1

2π

∫
C(s0,δ0)

|fn(z)− f(z)|
|z − s|2

|dz| ≤ 1

2π
· max
z∈C(s0,δ0)

|fn(z)−f(z)|
∫
C(s0,δ0)

1

(δ0/2)2
|dz|.

Επειδή ℓ
(
C(s0, δ0)

)
= 2πδ0, παίρνουμε

sup
s∈∆(s0,δ0/2)

|f ′n(s)−f ′(s)| ≤
1

2π
· max
z∈C(s0,δ0)

|fn(z)−f(z)|·
2πδ0

(δ0/2)2
=

4

δ0
max

z∈C(s0,δ0)
|fn(z)−f(z)| −→ 0

καθώς n → ∞. Έτσι αποδεικνύουμε ότι για κάθε s0 ∈ Ω υπάρχει δ0 = δ0(s0) > 0 τέτοιο ώστε
f ′n → f ′ ομοιόμορφα στον ∆

(
s0, δ0/2

)
.
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Έστω τώρα K συμπαγές υποσύνολο του Ω. Θεωρώντας την ανοικτή κάλυψη του K από
δίσκους∆

(
s, δ(s)/2

)
, s ∈ K , και περνώντας σε πεπερασμένη υποκάλυψη, βρίσκουμε s1, . . . , sN ∈

K και δ1, . . . , δN > 0 ώστε

K ⊆ ∆
(
s1, δ1/2

)
∪ · · · ∪∆

(
sN , δN/2

)
,

και το f ′n → f ′ ομοιόμορφα σε κάθε έναν από αυτούς τους δίσκους. Αφού το πλήθος των δίσκων
είναι πεπερασμένο, συμπεραίνουμε ότι f ′n → f ′ ομοιόμορφα στο K.

Θεώρημα 5.9. Έστω Ω ⊆ C ανοικτό και {fn}∞n=1 ακολουθία αναλυτικών συναρτήσεων στο
Ω. Υποθέτουμε ότι υπάρχει f : Ω → C τέτοια ώστε η σειρά

∑∞
n=1 fn να συγκλίνει στην f

ομοιόμορφα σε κάθε συμπαγές υποσύνολο K του Ω. Τότε, η f είναι αναλυτική στο Ω και για
κάθε συμπαγές K ⊆ Ω ισχύει ότι η σειρά

∞∑
n=1

f ′n

συγκλίνει ομοιόμορφα στο K προς την f ′.

Απόδειξη. Για κάθε n ∈ N ορίζουμε sn = f1 + · · · + fn. Κάθε sn είναι αναλυτική στο Ω και
sn → f ομοιόμορφα σε κάθε συμπαγές K ⊆ Ω. Από το Θεώρημα A.1.1 έπεται ότι η f είναι
αναλυτική στο Ω και ότι s′n → f ′ ομοιόμορφα σε κάθε συμπαγές K ⊆ Ω. Επειδή

s′n = f ′1 + · · ·+ f ′n,

συμπεραίνουμε ότι η σειρά
∑∞

n=1 f
′
n συγκλίνει ομοιόμορφα στο K προς την f ′.

Θεώρημα 5.10 (Identity theorem). Έστω Ω ⊆ C ανοικτό και συνεκτικό και f : Ω → C ολόμορφη.
Αν το σύνολο {s ∈ Ω : f(s) = 0} έχει σημείο συσσώρευσης μέσα στο Ω, τότε f ≡ 0 στο Ω.

Πόρισμα 5.11 (Μοναδικότητα αναλυτικής συνέχισης). Αν f, g είναι ολόμορφες σε ανοικτό, συ-
νεκτικό Ω και συμφωνούν σε σύνολο με σημείο συσσώρευσης στο Ω, τότε f ≡ g στο Ω.

6 Μιγαδικά ολοκληρώματα

6.1 Ορισμός και βασική εκτίμηση

Ορισμός 6.1 (Ολοκλήρωμα κατά μήκος καμπύλης). Έστω γ : [a, b] → C τμηματικά C1 και F
συνεχής σε σύνολο που περιέχει την γ([a, b]). Ορίζουμε∫

γ
F (s) ds :=

∫ b

a
F (γ(t)) γ′(t) dt.

Πρόταση 6.2 (ML-ανισότητα). Αν |F (s)| ≤ M πάνω στην καμπύλη γ και ℓ(γ) είναι το μήκος
της, τότε ∣∣∣∣∫

γ
F (s) ds

∣∣∣∣ ≤M ℓ(γ).

6.2 Θεώρημα και τύπος Cauchy

Θεώρημα 6.3 (Θεώρημα Cauchy). Αν F είναι ολόμορφη σε ανοικτό σύνολο που περιέχει ένα
απλό κλειστό περίγραμμα Γ και το εσωτερικό του, τότε∫

Γ
F (s) ds = 0.
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Θεώρημα 6.4 (Τύπος Cauchy). Αν F είναι ολόμορφη σε ανοικτό σύνολο που περιέχει τον
κλειστό δίσκο ∆(s0, r), τότε για κάθε s ∈ ∆(s0, r) ισχύει

F (s) =
1

2πi

∫
|w−s0|=r

F (w)

w − s
dw.

Πόρισμα 6.5 (Ειδική περίπτωση: «υπόλοιπο στο 0» χωρίς Laurent). Αν H είναι ολόμορφη σε
γειτονιά ενός απλού κλειστού περιγράμματος Γ που περιέχει το 0 στο εσωτερικό του, τότε

1

2πi

∫
Γ

H(s)

s
ds = H(0).

6.3 Παραμόρφωση διαδρομής (homotopy invariance)

Θεώρημα 6.6 (Παραμόρφωση διαδρομής: κλειστές καμπύλες). Έστω F ολόμορφη σε ανοικτό
σύνολο U ⊆ C και Γ0,Γ1 δύο τμηματικά C1 κλειστές καμπύλες που είναι ομοτοπικές μέσα
στο U . Τότε ∫

Γ0

F (s) ds =

∫
Γ1

F (s) ds.

Παρατήρηση 6.7. Στο Κεφ. 9 αυτό χρησιμοποιείται όταν το integrand περιέχει gT (s) (που είναι
entire), οπότε μπορούμε να παραμορφώσουμε το «αριστερό» κομμάτι μιας καμπύλης σε πιο
βολική καμπύλη για εκτιμήσεις. Για το μέρος που περιέχει g(s) (όχι entire), δεν επιτρέπεται
γενικά τέτοια παραμόρφωση.

6.4 Ένα μικρό λήμμα συμπαγότητας

Λήμμα 6.8. Έστω A ⊂ C συμπαγές και g ολόμορφη σε γειτονιά κάθε σημείου του A (δηλ.
για κάθε a ∈ A υπάρχει δa > 0 ώστε g είναι ολόμορφη στο ∆(a, δa)). Τότε υπάρχει δ > 0
ώστε g να είναι ολόμορφη σε όλη τη {z : dist(z,A) < δ}.

Απόδειξη. Οι δίσκοι ∆(a, δa/2) σχηματίζουν ανοικτό κάλυμμα του A. Από συμπαγότητα υπάρ-
χει πεπερασμένο υποκάλυμμα ∆

(
aj , δaj/2

)
, j = 1, . . . ,m. Θέτουμε δ = minj δaj/2 > 0. Αν

dist(z,A) < δ, διάλεξε a ∈ A με |z − a| < δ. Υπάρχει j με |a − aj | < δaj/2. Τότε |z − aj | ≤
|z − a|+ |a− aj | < δ + δaj/2 ≤ δaj , άρα z ∈ ∆

(
aj , δaj

)
όπου g είναι ολόμορφη.

7 Αναλυτικές συναρτήσεις που ορίζονται από ολοκληρώματα

Θεώρημα 7.1 (Ολοκληρωτική ομοιομορφία σε συμπαγή⇒ ολόμορφοτητα). Έστω Ω ⊆ C ανοικτό
και f : [a, b]× Ω → C τέτοια ώστε:

• για κάθε x ∈ [a, b], η s 7→ f(x, s) είναι ολόμορφη στο Ω,

• για κάθε συμπαγές K ⊆ Ω υπάρχει gK ∈ L1([a, b]) με |f(x, s)| ≤ gK(x) για όλα τα
s ∈ K.

Τότε

F (s) :=

∫ b

a
f(x, s) dx

είναι ολόμορφη στο Ω και επιτρέπεται παραγώγιση μέσα στο ολοκλήρωμα:

F ′(s) =

∫ b

a

∂

∂s
f(x, s) dx.
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