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1 H mwpodT™) avoywyy
1.1 AOpoioym xatd Abel
Osdpnua 1.1 (Abpoton xatd Abel). Eotw 0 < y < x mpayuatixol apbuol xar [ : [y,z] — R

ovve s TTapaywyiown. Oswpobue Ty axolovbior pryadixdy aetuy (an)n>1 xoat yioo xdbe

t > 0 opiovue
A(t) = Z ap,.

n<t

Tore oxvet

S anf(n) = A(@)f(x) - A@y)f(y) - / A £ dt.

y<n<lz
Ozdpnpa 1.2 (Tvrog dbporong Euler). Eotw 0 < y < x mpayuatxol apuol xow [ : [y, x] — R
ue ovveyh mopdywyo f' oto [y, x]. Tote
€T €T
S = [Crwdes [ r@a ) £6) - (o) 1)
y<n<z Y Y
drov {t} =t — |t]| elvou T0 xAaouatixd ugpog.

Ot Topoaxdtew 300 EQOUEUOYES ELVOL XOPOXTNELOTIXES YLOL TO TG YOEYNOLLOTTOLOVUE TOV TUTTO
abpotomg.



Ozwonuo 1.3. Ita x > 1 woxvet

1 1
Z:logm+7+(9<>, Sy
n T

n<zx

orov v elvar n otabepda tov Euler, opilouevy amwd

~ {1}
=1- —-dt.
r=1- [

_ 1
fy:xlgrgo Zg—loga:

n<x

EmitAdoy,

Anddeiy. Egappolovpe to Osdpnuo 1.2 yroo Ty ouvdptnon f(t) = 1/t xaw y = 1. Téte {1} =0

xou f'(t) = —1/t2, dpo
Z / dt+/ {t}(—)dt—{x}

1<n<$

{t} {=}
Z%—l—klo / dt — ==

n<x

Emopévwg

IMpocbétovpe xor aporpodpe floo %}dt:

Z;—log$+(1—Am?dt)+/m?dt—{z}

n<x z

Opilovtog v =1 — fl 1 gt radpvovpe

Zl log:):—l—’y-i-/ {t}dt {i}

Toypa 0 < {t} < 1, oo

> o 1 1 1
og/ {}dtS/ L P

X X

8

Apoa to vrororo efvar O(1/x) o mpoxdTTeL n (1). Térog, xabwg & — oo to O(1/x) teiver 670

0, omtote .
-1
Z - ogr — 1,
n<x
dNAadH v = limy 00 (Zn<m ~ —log x) O
Optopol

INo x> 0 6éTovpe:

m(z) :=#{p < x: p mpvroc}, 0(x) = z:logp7
p<z

=Y A(n)= > logp,

n<z pk<z

oL

6mov A eivow 1 suvdETEN von Mangoldt: A(n) = logp av n = p¥ yio xémorov TpdTo p xow k > 1,
xat A(n) = 0 odAede.



Ozspnuo 1.4. o xabe x > 2 oxbovy oL TaVTOTYTES

O(x) = m(x)logx — /; m(t) dt,

(o) = 221, 700

- log © t(logt)?

xou

Amode&y. Egoppolovpe to Oedonuo 1.1 pe y = 2,

an = 1{71 TEHTOG) f(t) = logt, A(t) = Zan = ﬂ-(t)'

Tére

Z anf(n) = Z logp = 6(z) — log 2.

2<n<lzx 2<p<lz

To Oedpnua 1.1 diver

v dt
O(x) —log2 = 7(x)logx — 7(2)log 2 — / m(t) e
2
Enewd? m(2) = 1, ot 6pot log 2 amoaieipovror, xor Taipyovpe
T
t
O(x) = m(x)logx — / Wi) dt.
2
Egopuolovpe oAl to Oedpnpo 1.1 pe y = 2,
1
an = (logn) 1{n TPWTOG} f(t) = logt’ At) = Z an = 0(t).
ogt net
Téte )
ogp
> anftn)= Y oh =n(a) - L,
ogp
2<n<zx 2<p<zx
ETOUEVLG
(@)~ 1= b0) o =~ 00) oy — [ 00 St
m(x) —1=0(z — — .
log x log 2 9

Ened 0(2) = log2, o 6pog 6(2)/log?2 eivor 1 xou amadeipetar pe 1o —1 aplotepd. Eniong

10 (1) =g

Apa
_ 0@ [T _0)
mw) = log x +/2 t(logt)?
O
Ozpnuoa 1.5. INa xabe x > 1 toyvet
2
0 < () — O(x) < YEUOBD) @)

2log?2

Edwdrepa, yioo x > 2 éxovue

Y(z) = 0(z) + O(v/z(log z)?).



Anddeln. H aviodtnro ¥(x) — 0(x) > 0 eivon dueon, apod 1 P mepthopBéver 6Aoug Tovg 6povg
¢ 0 %o eTUTAéOY TIC GUYELGPOPEC amtd TTPGhTEC duvéuete pF e k > 2.
[Mo 1o dvew Qpedypa, Eextvdpue amd Tov optapd

=) An)= > Alp
n<x pk<z

Opadomotdvtag we Tog Tov exbétn k maipvovue

=Y. > logp=) z"").

k>1 p<gl/k k>1

To &Bpotopa wg Tpog k eivar oty TEEEN Tenepaopévo, Stott B(y) = 0 dtav y < 2 (Sev vTdpyoLY
rpdtor < 1). Apa (/%) = 0 yiae 2'/% < 2, SqAadA yiox

log x

log2

ZOVETTWG

z) =Y 0ty = Y @)

k>2 2<k<logxz/log2

T k > 2 éyovpe z'/% < (/. dpo (ovotovia tng 6)

0(z'/*) < 0(\/x) Yo x6e k > 2.

Emopévwg
log
—0(x) <40 . .
V(o) - bl) < 6() - 257
TéAog,
=) logp< > logyx < \alogy/x.
<z p<y/T
Apa
log:E (log z)?
< 1 = .
b(o) — 0le) < Vtog V- 15T — 5. (B
oL eivar axpLBog to (2). O

Afppa 1.6. o x > 3 oyvet

Todt < Cla; /oc dt CQ.CL‘
2 (

- < .
5 logt ~ logz’ logt)?2 ~ (logx)?

Anddeity. Oétovpe u = /z. N t € [u,z] éxovpe logt > logu = 5 logz. Apa

odt “odt Todt -2
ot~ ot L it = gz i 00 ) = i)
5 logt 5 logt u logt = log2 = Slogx log x logz
Opolwg,
/I dt <ut " < VT + T o« ®
U .
5 (logt)? — (2 log:z) (logz)? — (logz)?



Ozpnuoa 1.7. Ot Tapaxdatw wpotaoes elvar LoOSVYOUES:

x
~ 3
@) ~ @
0(z) ~ x, (4)
P(x) ~ . (5)
Arode&n. Améd to Oedpnuo 1.4 éxovpe, yio x > 2,
T
t
0(z) =m(x)logz — / Wi) dt.
2
ALotoc: , m(z)logx _ _m(x) ,
PWYTOG UE T X0UL YOAPOVTOG ——— 7/ logz ToHpvovue
0 1 [*x(t
@)t 1, o
x x/logx x )y t
(3) = (4). Yrobérovpe 6t w(x) ~ x/logx. Tote vdpyeL otabepd C > 0 Wote Yo t peydAa
t
m(t) —.
logt
Apa
1 [*xt 1 [* dt 1
/ Q dt <« — — << .
T Jo T z Jo logt log x
ZUVETIOG

i/jﬂgf)dt—>0 (x — 00).

0(x)

@) 1, maipvoope == — 1, dnAadn

z/logx

Emotpépovtag otnv (6) xat ypnoipomotdviog 0t
O(x) ~ x.
(4) = (3). A6 t0 Pewpnua 1.4éyovpe emiong

m(x) blz) —i—/; o(t) dt,

- log © t(logt)?
qpo
m(x) O(x) logzx /” 0(t)
= t. 7
x/logx x + x  Jy t(logt)? d @

YroBétovpe 0(x) ~ z. Téte vdpyet otabepd C' > 0 dote v t peydre 0(t) < Ct. Etol

logz [* 0(t) log = /‘T dt 1
dt .
x /2 t(logt)? <7 9 (logt)? < log

; . , ; . , p w(z)
Tty (7) Aowmdy, o dedtepog bpog teiver oto 0 xow o mEwTog TElvel oTo 1, ombTe Tiogz 1,

dnhadh 7(x) ~ x/logx.
(5) <= (4). A6 0 Ocdpnua 1.5 toyder 0 < (z) — O(z) < Cy/z(logx)? Yo & > 2. Atowpdvtog
UE T Talpvovpe
0
i (V0 0) g
T—00 €T T

Apo O(x) ~ z av xor pévo oy Y(x) ~ x.
Svpmepaivovpe 6t (3), (4), (5) eivon Loodvvapeg. O



E@doov Bérovpe v aodeiEovpe 6t () ~ x, xdvovpe Ty e Booixd avaywY, ue Bdon
TO TOPOXATW Bedpnua.

Ocdpnuoa 1.8 (Korevaar-Zagier). Eotw (an)n>1 axolovlio ue a, > 0 xou opifovue, yio v > 1,

A(zx) = Z .

n<x
Ay 70 Yevixevuévo oloxIfpwo
© Alx) — =z
———dx
o

ovyxAvet, Tote A(x) ~ x, xabdg x — 0.

I(y) = /oo Al =t

2
y t

Amodeéy. Oétovpe

H vré0eom 61t floo A(g_t dt ouyxiver toodvvapel pe I(y) — 0. Oa amodeiEovpe 6t A(z)/z — 1.
Yrobétovpe, Tpog droro, 6t limsup, .,  A(z)/x > 1. Téte vrdpxer A > 1 xou drelpo « pe

A(z) > Ax. T tétoto x xow xébe t € [x, \z]| woyder A(t) > A(z) > Az, doo

Az _ Az _
I(z) — I(\x) = / A(tt)ztdtz / A:”ﬂ Lat.

Me vy adhoyn petofAntig t = vx malpvovpe

A\x A
Ax —t A—0
T 1

Opwg I(z) — 0 xow I(Ax) — 0, dpo I(x) —I(Az) — 0, &romo. Avédoya amoxheietor xaw 1 oxéon
liminf, .o A(z)/z < 1. Apa A(x)/z — 1. O

1.2 “Eva @uotxd avtixeipevo: Mellin—tdmov oloxAjpwpo

o o > 1 opilovpe

[T Y() -
F(o) .:/1 g dz. (8)
Tomxd, ( )
Y(z) —x
F(1) :/1 . dx,

dpar To gpyTpe givor o To F(0) pumopel va «xortéBer» péypt o = 1 pe menepoopévn tipd. Tlpog
T0 TPy gpYalOpoaTE LOVO GTO 0 > 1, 6TTOL GACL Elval ATTOADTWE VOWLLUAL.

1.3 H oVvdeom pe v ocvvéptron Mangoldt

Anppo 1.9. o xabe o > 1 woxdet

[e.9]

Cp(x) 1~ Aln)
1 x‘7+1d$_<7; no



Anddeln. Ao tov opoud (z) = >, . A(n) xaw emerdf A(n) > 0, propodue va epapudoovpe
Tonelli xot vor avtohAdEovpe abpolopa—oroxAnpwi.o:

/100 o) dm:/loo S A(m) | Ve

n<z

) )
1 n

= ZA(H)/ Lin<a) 0 Ve = ZA(n)/ z7 1 dx.
n=1 n=1

/ 7 de = —n"7,
n o

omtHte TTalpvovpEe To {MTOVUEVO. O

INo o > 0 éyovpe

EmimAéoy yia xélbe o > 1 woydet

gz o 1
dr = “dx = ,
/1 o T /1 T T p—

ETOUEVWG TTOLLPVOLUE TNV axdAoLOY LadTYTO.

Mpotaon 1.10. [a xale o > 1 woydet

1 > A(n) 1
F(U)_anzl n® o-—1 ©

Apoa 0 TPOPANUE pog peTopépbnxe Quotxd ot LeAéT Tng octpdg Dirichlet
5
n=1 ne
1.4 XOvdeoy pe v cuvaptnoen C

Ewoéyovpe v ouvéptnon ¢ we oetpd Dirichlet:

1
((0):=> — (o>1). (10)
n:ln

Adppo 1.11 (Mopayoyion e ¢ yio o > 1). Na xdbe 0 > 1 oxdet
o0

CI(O') _ _Z logn.

nO’

n=1
Amtode&y. Toxébe € > 0 7 oelpd anl iff’% OUYXALVEL, OTTOTE ¥] OELPA TWY TTHEOYWY WY GUYXALVEL
opotépop@a ato [1 + £,00) (Weierstrass M—test). Apo emitpéneton n mopaydyton g (10) yia
o>1. O

To xptlotpo aptBuntind yeyovdeg eivor pLo tavtdtta yro T von Mangoldt ouvdptnom.

Afppo 112 (Toavtdémro Sronpetady yroo A). To xabe axdpowo n > 1 woydet

logn =Y _ A(d). (11)

din



AnodeEy. Avn = H;n:l p?j, t61e logn = Z;n:l ajlogpj. Ot dranpéteg d tov n pe A(d) # 0 eivon
oxpLPwg oL Suvdypelg pf e 1 <k < aj, doo

m &5 m
ZA :ZZIngj:Zajlogpjzlogn.
djn j=1k=1 j=1
O
, . N~ Aln) . .
Appoa 1.13. Tto xabe 0 > 1 n oepa Z o OLUYXAVEL ATOAVTRG.
n>1
Andde&n. loyver A(n) < logn, &oo
oo oo
A(n logn
yo A gnlosn )
ne ne
n=1 n=1
O
Ozwonuo 1.14. o xabe o > 1 oxvet
/ > A
(o) = n
Arnodeén. Améd to Afupo 1.11 éxovpe
> logn
=Y
n=1
Xpnotpomolodpe Ty towtdTrTe (11):
>
- no
o o > 1 6ot oL bpot eivar un apvnrixol, ortdte (Tonelli) avadtotdooovpe:
oo oo oo
=Y A Y - =Y A
d=1 w1 d=1 m=1
din
oo o0 oo
A(d) 1 A(d)
- (z D) (Z) - (z ) e
d=1 m=1 d=1
Enedq (o) > 0 yio 0 > 1, Stowpodpe xow waipvovpe ty (12). O
1.5 Xvpmwépoopo
Yvvdvalovtog v [pdtoon 1.10 pe o Oedpnua 1.14 Taipvovpe, yio xdbe o > 1,
1{d(0) 1
Flo)=—— - . 13
(0) o(lo) o-—1 13

Eexwnoope and ™ P xar T0 xpLtipto Korevaar—Zagier, xot @Téoope 6to 4T 1 LEAETN TNG
obyrhorng tou (??) wooduvopel pe To vor xataAdBovpe TY] GLUTEPLPOPE ToL JeELOl LEAOLS TOL
(13) xaboc o | 1.



INatt avaykactikd 0o wepdoovpe oe puLyodixy] avaivo.

Hopoatienon 1.15 (Twoti dev apxel va peivovpe oto o € R). Méyptl edd SovAédape pévo pe
mpoypotxd o > 1. To emduevo Prpo Bo tay vo Ttepdoovpe 6To

Fuy—zm¢@;_xm;

0AAG awTh Sev TTPOrVTTEL Lévo amd ) Yvwon tov F(o) o o > 1. Mpdypott, av mdpovpe

E(z) := zsin(log 1), Fg(o) == * E(z) do — /100 Md%

1 o+l xo
ue ™y ocAhoy peTtoBAntig © = log x mpoxdTtTEL

1

Fg(o) = / e @ DU siny du = (G—1241
0 —

Goo limg ) Fp(o) = 1. Hpdyport, vag Yoyopog TpOmog YLo TOV TEAEUTRLO DTTOAOYLOWO Elvau

/ e~ (DU gin gy dy = %/ e~ (o—Dugiu gy E‘s/ e (o=1=du gy,
0 0 0

Moe o > 1 éyovpe R(o—1—1i) =0 —1> 0, dpo

/ e—(a—l—i)u du = #
. o—1—i

Emopévwg

o0 1 o141 1
—(oc—1D)u _: du =< — < = .
A ° P °<w—4ﬁ+1> c—12+1

Qotéoo

FE(l):/ sm(og:/c)dx:/ sinu du,
1 0

X

1oL 3EV GUYXAIVEL. ANADY: oxOUN %oL TTOAD XA GLUTEPLPOPE Yior OAa Tow 0 > 1 (o péhoTo
OToPEN optov oto o | 1) dev eyyvdror obyxhon oto o = 1.

H owoti mpdobetn mAnpopopio eivar va ehéyEovpe v optass evbeior R(s) = 1, dnhadA T
ovpuPaivel Yo § = 0 + it. XTO TOPATAVE THPASELYUO, O OVTIOTOLYOG UETAOYNUOTLOUOG Efvart

1

Fp(s) = Go124 1

oL éyeL méAovg ot § = 1 + i, IadN Thvw oty R(s) = 1. Avtég o avwpaieg avtiotol oy
0E TAAOWVTWOELSG KoL E{val axpLBHOg aTd TOL TEETEL VO ATtOXAELGOLUE OTNY TEPITTTWON TN (.



2 Eméxtoaomn Tov OpLtopod g cuvaptnorg ¢

Appa 2.4, Eotw (ap)p>1 pe an € C xou éotw

(429
F(s):= —, s=o+it
nS
n=1
Av vrdpyet 09 € R téroi0 dote Y 0, 7?7"()' < 00, T0TE YMox xafe o1 > 00 N OElPA oLYXAVEL

=

(s

Z an logn

ue ouotduopn obyxhon oe xabe RN(s) > o1 > o

OTTOADTWG KOl OUOLOUOPPO OTO NUETLTEOO > o01. Emrniéoy, n F elvar oAouopen oto

R(s) > og xa

AnddeiEn. T s pe R(s) = o > o1 éxovpe

ol _ lal

Gnp
n? — nor’

ns

Emeldn Zn>1 |a”‘ < 00, T0 M-xprthpto Tov Weierstrass Sivet opotdp.open odyxiion oto R(s) > o1.
Apo n F eivon oovsxng exel.

—s5 —slogn

[ v ohopopeio, Topotnpodpe 6Tt xébe bpog s — apn elval oAGpopeN xo

Yo 0 > 01 LoyVeL

= ape

anlogn| |an|logn < |an|logn

ns no nol

AMG yro %60 € > 0 oyver logn < nf yio n apxetd peydhro, ondte (w.y. moipvoviag € =
(01 —00)/2 1>, ‘a"u‘ign OLYXALVEL. ApoL M GELPE TWY TTOEOYWDYWY GUYXALVEL OUOLOULOPPO. HTOY
R(s) > o01. A6 10 Oedpnua 5.7 ovpmepaivovpe ot F elvor oAGpopen xoar 6t emitpéreton

Topoywyion 6p0-000. O
Mpdraocyn 2.2. INa R(s) > 1 opllovue
ns’
n=1

Tote n oelpd ovyxAiver amodbtwg yia R(s) > 1, 0pller oAduopen ovvdptnon oto {s : RN(s) > 1},
xou yir xabe R(s) > 1 woyder

> logn
CI(S) - Z E
n
n=1
UE ouoLduopPn oUYxMon oe xdbe nueninedo R(s) > 1+ (0 > 0).
Arodeén. Epoppdlovpe to Afupo 2.1 pe ap = 1 xat og = 1. O

Hopatipnon 2.3. Oétovpe Hy := {s € C: R(s) > 1}. H oeLpd

dev ouYxAiveL opodpopea oto Hi.

10



Mpdryportt, €0Tw TPOG drtoTo 6Tl oLYXALVEL opoLépopa ato Hy. Tote, omd to xprtipto Cauchy
Lo opoLOLopeY obyxAom, yto € = 1 vmépyer N € N tétoro wote yio xébe £ > k > N xow x60e

s € Hy vo toydet
0

1
2

n=k

<1

Etduxdtepa, awtéd toydeL yio xébe mopayuatixd s > 1 (apob (1,00) C Hi). o mparypotind s > 1
6ot ot dpot eivor Betixol, Gpo

1
Y =<1 (>k>=N,s>1).

1

n’

Agrvovtog tdhpar s — 1T, xon yonowwomoldvtag 6t Yo x&be otabepd £,k éxovue % —
Tolpyovpe

|
E —<1 ({>k>N).
— N

TéMog, aphvovtog £ — o0 xorcoc?wwoup.s ot

Zlg1 (k> N),
n:kn

ATOTTO, ETELON N OEUOVLXY] OELPA atoxAlvel. Apo 1 opytxn vTtdbeon eivon Pevdc.

Mpétaoy 2.4. Octovue

= Aln
-3 )

Tote n F elvar xald opiouévy xouw oAduoppn oto R(s) > 1, xou

o

Z A(n logn

n=1
UE ouotduop@n alyxhion oe xabe R(s) > 1+ 0.

Arddeiln. Xonotpomorobpe 6t 0 < A(n) <logn yio x&be n > 2. a0 > 1 éyovpe

i_o; |A(n Zlogn

oo eoppoloovpe to AMppo 2.1 pe og = 1. O

Mpéraon 2.5. Ocwpobue to queninedo ) = {s € C : R(s) > 1}. Yrobérovue drt yix xcbe
mpaypotxd s > 1 éyet 1On amodeybel n TavtoTyTA

— ) A
n=1

Tote 1 (Bl TavTdTyTo toyVeL Yior xAbe pryodixd s € (L.

1



AnddeiEn. Amé v Tpdtoon 2.2 n ¢ xow n ¢’ eivon oAbuoppeg oo Q. Antéd v Mpbdraon 2.4 7

F(s):= Z A(?)

n

n=1

etvo 0AGRopen 670 2. Apa ot To yvopevo ((s)F(s) eivor 0AGpopen cuvdptnon oto .
Opilovue ™y oAOoPPY cLVEPTNOTN

H(s) == —(C'(s) = C(s)F(s) (s €Q).

A6 v umdBeom, v xébe mpoypotixd s > 1 woyver H(s) = 0. To obvoro (1,00) C Q éyer
onueio ovoawpevong evtdg tov 2 (T.y. oto s = 2), Gpa ard ™V Apy ) Avohutixig Zvvéylong
(Identity Theorem) ovpmepaivovpe 61t H = 0 oc 6h0 to 2. AnAadA

A(n)

—((s)=¢(s) Y

n=1

yia xébe s € (L.
O

Afppa 2.6. Eotw Q) C C avowxtd, sg € Q xou f: Q — C odduopen. Yrobérovue ot f # 0 xou
ot f(sg) = 0. Tdre vrdpyet axépatos m > 1 xou 0Aduop@n cvvéptnon h oe xdmowx yertovid
Tou 5o ue h(sg) # 0 térow dote

f(s) = (s —s0)"h(s)

Yt 8 xovTd oto Sg. O m elvou povadixds xat Adyetoar téEn (f moAldamAdTnTa) Touv Undevixosd
0TO S0.

Arddety. Emedn f eivar oAopopen, vtapyet r > 0 xow avémroypo Taylor
o0
f(s) = an(s—s0)"  (ls—sol <r).
n=0

Ao f(sp) = 0 moaipvovpe ag = 0. Eredf f # 0, dev elvow 6hoL oL ovvtereotég pundéy, Gpo
vTdpyeL eAdytotog m > 1 pe ap, # 0. Téte

f(s) = Z an(s —sp)" = (s —so)™ Zam+k(s — s0)".
n=m k=0

Otovpe
[e.e]
h(s) := Z amari(s — s0)".
k=0
H h eiva 0AGpopen oo |s — so| < r xow h(sg) = am # 0. H povadixdtnro tov m mpoxdmtet oo
™ povadixdtnto tov Taylor avamtdypoatog. O
Ocdpnua 2.7. o xdbe s pe N(s) > 1 woyder ((s) # 0.

Antddeity. "Eotw mpog dromo 6Tt vrdpyet so ke R(sg) > 1 xow ((so) = 0. H ¢ eivor oAdpopen oto
R(s) > 1, Gpo t0 sp eivor undevixd xdmorog téEng m > 1, dnAad# vrdeyer 0AGLoPEN h xovTd
o7o so pe h(sp) # 0 wote

((s) = (s —s0)"h(s).
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Térte

¢'(s) = m(s — s9)™ Lh(s) + (s — s9)™H (s),

ondte M (' (s) éxer undevind oxpLfig TéEng m—1 oo sq. looddvapa, —('(s) éxer pndevind axpLBeig
TéEng m — 1 oto sp.
Ané v Tlpdtaon 2.5 éyovpe oo R(s) > 1 v TowtdTnTO

) =@ F(s), Fle)= Y A0

n>1

H F eivor 0A6p.open ato R(s) > 1 (amd amdAuTtn oOY*ALGN), GO XOVTE GTO S) ELVOL TTETEPUGUEV.
Emopévwg to yvopevo ((s)F(s) éxet undevixd téEng TovAdytotov m 670 sg, opod 1 ¢ éxeL TéEn
m exel.

Apa to opLotepd péhog —('(s) Ba émpeme vou éxet undevind TEENG > M 070 S, TOL AVTLPEOXEL
ue o 6T éxet TEEN oxptPug m — 1. Atoro. Toverng ((s) # 0 yro R(s) > 1. O

2.1 Mepopopeixi cuvéyeta tng ((s) oto R(s) > 0
Ocodpnua 2.8. Ia s € C ue 0 = Re(s) > 1 woyver

i AU

S
s—1 1 tst1

(s) =

AmodetEy. Am tov tomo abpoicewg touv Euler, maipvovue

d ont= 1+/xt—5dt+/x{t} (t=*) dt — {“’;}.
1 1 z

n<x

YToAoYL{oVTag To TTHPOTIAVL OAOXANPWUOTO XUTAAYOVUE OTNY LOOTNTA

S

Zn*sle_ SRR U S o O S

1-s s—1 x5 , tstl

n<x

TMepvévtag 6to 6pLo T — 0o (xow yonouwomotdvtag 6t o > 1 dote x17° — 0 xow {x} /2° — 0),
TOLPVOLULE TO {NTOVUEVO. O

Ocodpnua 2.9. H oyéon tov Oeswpriuatog 2.8 diver avadvtixs ouvéyion tng ((s) oto querninedo
o >0, ue anAo nolo oro s =1 xot vwolowro 1.

Amode&y. E@doov n ouvdaptnon

— i L +1
S =
s—1 s—1

elvar ovoluTen oe xébe onpeio Tov o > 0 extédg amd €vav amAd TéAo oto s = 1 pe vmdroto 1,
opxel vo delEovpe 6TL N cLYVEETNOY

>t
so= [ e

elvar ovolvTien oto o > 0.
IMo xébe m € N opiCovpue

mo{t
fm(8) :/ t{s‘*‘}l dt  yweseCpeo>0.
1
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Emedf 10 ohoxAnpwTéo eivar avalutixy] ouvdptoy Tov s, dev eivar dVaxolo va dovue Ot fr,
elvot avoluTiny oto nuLerinedo o > 0.
EvoAhoxtind, Yodoovpe to fi,(s) wg duvapooelpd. Mapoatnpodue 61t

O N “}*%”“+Wﬁ,

n!

{t} (=logt)"(s +1)"

>

Me 7o fedpnua Fubini, wcopo()ue vou oAAGEovpE TN oeLpd OAOXAPWOoYG ot abpoloews xow TTolp-
VOUUE

> <3 (\logﬂ(:‘!\ +1)" ol Togtl(ls|+1)

n=0

n=0

—logt)"(s+1)"
n!

m
dt < / s gt < 0.
1

Fnls) = Z (s + 1 / {1} (—logt)" d
n=0
oL £lvoil SLYOPOCELPE WG TTPOG TO S.
T vou 3obpe 6t fr, — f opolbpopea oc xébs ovpmoayéc voodvoro Tov o > 0, Bswpodye
70 NWLETITESO 0 > § %o TOLPVOLE

) =S| < [t s =

m om® ~ dmd’
Apo, av €, > 0 doboby, propodpe va StaréEovpe M > 0 mov eEaptdton amd €, oAAd oyt oo
w0 s (my. M = (62)~1/9) této10 date | fm(s) — f(5)| < € yi x40 m > M xon x&be s € C pe
0 > 6. ALTO ONOXANPWVEL TNY aATtOSELEN. O

Mopaptypa

3 Boaowd yio ptyodixois aptdpois xat ovvoio oto C

Optopdg 3.1. Kébe s € C ypdoetor povodixd wg s = o + it, 6mov 0 = Re(s) € R xow t =
Im(s) € R. To uérpo tov s eivou |s| = Vo2 + t2.

Optopos 3.2 (Aioxor xon nuterminedo). T sg € C xow 7 > 0 Hétovpe
A(sg,r) ={s € C:|s—so| <r}.

INa o9 € R Oérovpe
H,, = {s € C:Re(s) > o0}

IMpéraoy 3.3 (Aviodtnreg yra to pétpo). o z,w € C wydovy:

[z +w| <[z +|wl, 2w = [z o], |z/w]=]z]/|w] (w#0).
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Im Im

A A Re(s) = o9
So| r s
*—>o
o > Re
(o) O (B) To H,,,
dtoxog A(sg, ). pe r = Re(s) — og > 0.

Zynua 1: Aloxog xan JeEl nuieninedo.

3.1 ZOyxAwoy oo C

Optopog 3.4 (Zbyxion axorovbiog oto C). Aépe ét pror axorovbio (2, )n>1 C C ovyxdiver oto
z € C (xou ypdepovye z, — 2) ov

Ve >0 3N wote Vn > N, |z, —z| <e.
Mpétaon 3.5 (Kavédveg opiwv). Av z, — z xat w, — w oo C, tdre:
Zn + W, — 2 +w, ZpWy — ZW, lzn| = |2].

Ay emmAdoy w # 0 xouw wy, # 0 yia n ueydda, tote

Zn z

W, w

3.2 ZXepég pLyodixov apltdpoy

Optopog 3.6 (Zerpd xou peptxd abpoiopota). Ta (2,)n>0 C C Bétovpe Sy = Zivzo Zn. Népe
Ot Y 07 Zn oLYAAVEL av 1 oxohovBia (Sn) ouyxAiver oe xdmoto S € C.

Mpéraon 3.7 (Kpttipo Cauchy). H oepd Y o0 2n oLYXAVEL av xow udvo av:

m

D

k=n+1

Ve >0 dN dote Vm >n > N, < €.

Optopds 3.8 (Am6AvTn obyxhon). Aépe 6L Y o0 2n CUYXAVEL ATOAUTWS OV Y o o |2n| < 0.

Ozdpnua 3.9 (AnéAT™ obYXAoN = obYxAon). Ay > 7 |z,| < 00, TOTE N Y0 Zn OLYXAVEL

o
(o) oo
E zn| < g |2n]-

3.3 Opotépopoy cdY®AoY

Optopdg 3.10 (Opotdpopen odyxhon). ‘Eotw A C C xow f, f : A — C. Aépe 6v f, — f
ouoduoppa oo A oy

Ve > 03N dote Vn > N Vs e A, |fu(s) — f(s)| <e.

15



Mopotipnoyn 3.11. H opotdpopen obyxion fr, — f oto A wooduvopel pe

sup | fn(s) = f(s)] —— 0.

sEA n—00

Osodpnra 3.12 (Kprtipto M tov Weierstrass). ‘Eotw fp, : A — C xow M, > 0 dote | fn(s)| < M,
yie xcle s € A. Ay Y 07 | M, < 00, T6te Y 00 fn OLYRAWVEL OuOBUOPPa oTO A.

4 H exOstinn not pLyodixég SUVANELS

Optopos 4.1 (Exbetixnp). H exp : C — C opileton amd

[e.e] n

. z
e® =exp(z) = Z o

n=0

z’l’l
TMapoathpnoyn 4.2 (Toyrhon g exbBetixic). T 2z, = — oydeL = n|i+|1 — 0, dpa 1 oeLpd
n!

Zn+1
Zn

g exOetixng cuYXALvEL aOADTWS Yo x60e z € C.

“+w

Mpéraocy 4.3 (Baoixéc WSiétnree). Nor z,w € C oydovy e = e%e?, ¥ =1, xou

‘€Z| _ eRe(z).
Enionc et = cost +isint yux t € R.
Optopog 4.4 (Muyadinr dvvoun y° vy y > 0). Ty > 0 xow s € C Bétovpe

s . _sln
y =€ y7

o6mov Iny eivor 0 wpayuatixds Aoydptdpog tov Oetixol .

5 OAOpOP@PEG CUVOPTNOELG KOL OVOAVTLXY] GUVEYLGT]

5.1 Tomohoyxég "Evvoreg

Optopdg 5.1 (Avorxté/xaerotd). Q C C elvor avowutd ov yio x&be z € Q vrdpyer r > 0 pe
A(z,7) C Q. F eivow xAetotd av C\ F eivon avorxtd.

Optop.dg 5.2 (Soproyée). ‘Eva K C C Aéyetow ovumayés av eivor xAeLatd xal QEOYULEVO.

Optopog 5.3 (Zuvextixd). ) Aéyeton cuVeXTIXG oy BEV YPAPETOL WG EVwan SVO0 EEVLV, N XEVWY,
avoxtey (0TN oYXETRY TOTOAOYIO) GUVOAWY.

Optop.dg 5.4 (OA6poppT). ‘Eotw Q2 C C avorxtd. Mia f: @ — C AMyeton 0Aduop@n av yio xé0e

s € Q vrdpyet

TMpdtaoy 5.5 (AhyeBowéc mpdEet). Av f, g elvow oAduoppes oto Q, tdte [+ g xar fg eivau
oAduoppeg. Av emimidov g(s) # 0 oe 2, tdte xar f/g eivou 0Aduopp.

Oecpnua 5.6 (Weierstrass: 6pto oAdpoppwy). ‘Eotw ) avowtd xat fr, 1 8 — C oAduoppeg. Ay
fn — [ ouotduoppa oe xdbe ovurnayéc K C Q, tdte f elvar oAduopen oto 2.

Oewpnua 5.7 (Bedpnuo. Weierstrass: 6pLo 0AGpop@®y %o oOyxAton Ttopoywywy). Eotw Q C C
avowxtd xot (fr)n>1 axolovlioc oAduoppwy cvvapticewy fr : Q@ — C. YrmobBérovue dt:
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1. fn — f opotdpoppoa oe xébe ovprayéc K C €,
2. fl — g opoldpoppa oe xébe ovumoyés K C .

Tote n f elvouw 0Aduopen oto 2, wybet ' = g oto Q, xou udhota v xcbe k > 1 éxovue
fflk) — %) ouoiduoppa oe xabe ovumayic.

Ozwpnpa 5.8. Eotw Q C C avoxtd xou {frn}o2, axolovbion avalutixdy cuvapticewy oto
Q. Yrobérovue o1t vrapye f : Q) — C térowx dote f,, = [ ouoduoppa o xdbe cvumayés
vroovvolo K touv Q. Tote, 1 f elvar avadvtief oto Q xaw wydet o f), — ' opoduoppoa oe
xabe ovurnayéc vmoovvolo K tou Q.

Anddety. ‘Eotw s € 2. Apod to §2 eivow avouxté, vmégpxet § > 0 tétolo hote A(s,§) € Q. O f,
elvow ouveyeic 070 €, oo xow aTov xAetat6 Sioxo A(s, §). Aeod f, — f ouotépopea atov A(s, 6),
éneton 6L M f eivow ovvexrg otov A(s,d). Edudtepa, 1 f eivar cuveyic oo s. Tuumepaivovye
étol 6L m f eivan ovveyng ato (2.

"Eotw Tthpo 7 TOLYwvLxh xotTOAN TETOLO WOTE v etxévor Tg Y xabdg xow T0 e0wTEPLKS TNg
tpiywvo T'(v*) va mepiéyovtan oto . Apob xébe f,, eivar avorvtix oto 2, yio xédbe n € N

A Fu(s)ds = 0.

A@odb fr, — f opotbpoppa oto cupToyéc obVoro Y, éxovpe

Lfn(s) ds—Lf(s) ds

(6mov £(7) etvor To PAxog g 7). TUVETHG,

[yf(s) ds = 0.

Apob n f elvor xow cvveyhc oto (2, and to Bewpnuo Morera BAémovpe 6t v f eivon avahutiny
oto (2.

Bewpodpe Thpa avouxtéd Sioxo A(sg, dg) wate A(sg, §y) C Q2 xow éotw C(s0,dp) N TePLOépeLa
7oL Jioxov. Amé tov toTo tov Cauchy €yovpe

EYOoLpE

< max|fu(s) = f(s)| - £(v) — 0,
s€Y

1 n
fr(s) = 27”,/0( . (j_(z)de yioo x80e s € A(so, o),
50,00

nolL
£(s) = 1/ LL dz Yo xéde s € A(s0,00)-
C(s0:80) (

271 z—5)

Mopoatnpodyue 61t ov s € Ao, 80/2), o€ |2 — 8| > 80/2 yro xéibe z € C(s0,80). Gpo

o= g [ BOZIO < e O [ sl

- % |Z — 5’2 260(80,50

Enewdn £(C(s0,00)) = 2mp. modpvovpe

27T(50 4 m
= - ax
((50/2)2 (50 z€C(s0,00)

sup |fn(s)=f'(s)] < max | fn(2)=f(2)| [fn(2)=f(2)] — 0

sE€A(50,60/2) 2T 2€C(s0,60)

xalbdg n — 00. 'Etot amodetxvbovpe 6t yia xdbe s € Q vrdpyet do = dp(so) > 0 tétolo dote
[l = [ oporduoppo otov A(sg, 0o /2).
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‘Eotw tpa K ovprayég vmoobvoho tou (2. Oewpivtag v avowxt) xéAvdy tov K amd
Stoxoug A(s, (s)/2). s € K, xow mepvidvtog oe menepaopévn umoxdAudm, Bploxovye s1, ..., sy €
K xou 61,...,0n8 > 0 dote

K C A(81,51/2) U---u A(SN,(SN/2),

xow t0 f1 — [’ opobpopeo o x&be évay ard owtodg Toug dioxovg. Agod To TANBOg TV Sioxwy
elvow Temepaopévo, suurepaivovpe 6t fl — [’ opotdpoppo oto K. O

Ozwpnpa 5.9. Eotw Q C C avowtd xow {fr}o, axolovbion avolvtixdy cuvapticewy oto
Q. Yrobérovpe ot vmapyer [ Q — C téromx dote n oepd Yy oo | fn va ovyxdiver oty f
ouolBuop@o oc xdbe ovurayéc vmootvoro K touv Q. Tote, n f elvou avadvtixnd oto ) xou yio
xabe ovurnayés K C ) woydet 61t 0 ocpa

oo

21

n=1
ovyxAiver opoduoppa ato K mpoc v f.

Arnodesy. Tw xéabe n € N opilovpe s, = f1 + -+ + fn. Kébe s, eivar avarvtxs oto 2 xon
Sn — [ opotépoppa oe x&be ovproyés K C . And to OQedpnuor A.1.1 émetar 6t v f elvon
oot oto € xow 6t i, — ' opoldpoppa oe xébe ovumoyéc K C Q. Enedy

Sp =14+ s
OLUTIEQOLVOVUE OTL N OELOA Zzozl f1, ouyxhiver opotduopeo oto K mpog v f'. O

Ocwpnua 5.10 (Identity theorem). Eotw 2 C C avorxtd xat cvvextixd xou f: 8 — C oAduopen.
Av 10 obvoro {s € Q: f(s) =0} &xer onueio ovoodpevons uéoa oto 2, tote f =0 oro .

Moéptopa 5.11 (Movadixdtnro avolutixic ouvéxtong). Av f, g elvou 0Aduoppes oe avouxtd, ou-
vextixd ) xow ouuPWYoOvy o cUVolo ue onuelo ovoowpevons oto ), tote f = g oto €.

6 Miyodtxd oAOXANPOUOTH

6.1 Optopdg ot Bootxn extipnoy

Optopds 6.1 (OroxMipwua xaté pixog xapmdine). ‘Eotw v : [a,b] — C tunuatixé C! xow F
ovveyhg oe obvoro Tov meptéxet v Y ([a, b]). Opilovpe

b
/ F(s) ds = / F(y(8) 7/ (t) dt.

Mporaon 6.2 (ML-avieétio). Ay |F(s)| < M wave otny xoumvdn v xou U(7y) elvar to urixog
¢, TOTE
/ F(s)ds
-

6.2 Ozwonpo xot ToTog Cauchy

< M 4(y).

Oewpnua 6.3 (Bewpnuo Cauchy). Av F' elvar 0Aduoppn oe avowxtd obvolo mov meptéxet éva
anAd xAetoto meplypauuoa I' xow to eowtepixd tov, T0TE

/FF(S) ds = 0.
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Oecdpnua 6.4 (Tomog Cauchy). Ay F' eivow 0Aduop@pn o avoixté oUVOAO TTOU TEQIEXEL TOY
xAetotd dloxo A(so,r), T0te Yix xdbe s € A(sp,r) Loyet

F(s) = ! /|— _ F(w) dw.

211 w—S

Moéptopa 6.5 (Ediny mepintwon: «vmérotwo oto 0» ywpic Laurent). Av H elvou oAduopen oc
Yetrovid evog amAol xAetotod meptypaupoatos I mov mweptéxet to 0 010 eowTEQIXG TOL, TOTE

1 H(s)

2wy Jr s

ds = H(0).

6.3 Ilapopdpeworn dtadpourns (homotopy invariance)

Oecdpnua 6.6 (Tlapapdpewon dradpounc: xAetotég xaunies). ‘Eotw F 0Aduoppn o avoxto
obvoro U C C xou T, Ty 860 tunuotied C' xleiotéc xauniiec mouv eivon opotomixéc uéoo

oto U. Tote
/ F(s)ds:/ F(s)ds.
FO Fl

Hoapoationon 6.7. 1o Keg. 9 avtéd ypnotpomoteitar 6tav to integrand meptéyet gr(s) (mov eivon
entire), OOTE UTOPOVUE VO TOPXUOOPDOOOVUE TO <OPLOTEPO» KOUUGTL LOG XAUTTOAG OE TTLO
Bohux? xopmOAn yLoo extipioets. T to pépog mov mepLéyet g(s) (6ye entire), dev emitpémeton
YEVLXA TETOLOL TLOROLLOPPWTT.

6.4 “Eva ptxpo AMppo copmoyotnrog

Afppa 6.8. 'Eotw A C C ovurayés xar g oAduoppy oe yerrovid xabe onueiov tov A (SnA.
yioo xcbe a € A vrdpyet 6, > 0 dote g elvou 0Aduoppn oto A(a,d,)). Tore vrdpyet 6 > 0
bote g va elvar 0Aduop@n oe dAn tn {z : dist(z, A) < J}.

Ardde&n. O dioxor A(a,d,/2) oynuoatiCovy avoixtd xdhvppe tov A. At copmoydtnto vIdE-
xeL memepaopévo vmoxdhoppe A(aj, dq;/2). j = 1,...,m. Oétovpe § = min;dy, /2 > 0. Av
dist(z, A) < 6, Sbheke a € A pe |z — a| < J. Yrépyer j pe |a — aj| < dq; /2. Téte |2 — aj| <
|z —al +|a—aj] <64 0a;/2 < ba;. bpa z € A(ay,da;) 6m0L g lvor OAGLOPPY. O
7 Avolutinég cvVOPTNOGELS TOL 0PLOVTOL ATTO OAOXANPOUOTO

Bedpnpa 7.1 (OAoXANE®TLXH opolopop@io o ovuTayf = oAdpoppotnta). Eotw 2 C C avowtd
xor f:[a,b] x Q — C térowx dore:

e v xdbe x € [a,b], n s — f(x,s) eivou oAduoppn oto Q,

o yix xdbe ovurayéc K C Q vrmdapyer gk € L'([a,b]) pe |f(z,s)| < gx(x) yix dAa T
se K.

Tore )
F(s) ::/ f(x,s)dx

elvar 0A0uop@n oTo §) X0 ETITOETETOL TOPAYWDYION UECK OTO OAOXATOWUN:

b
F'(s):/ %f(x,s)dx.
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