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ΠΕΡΙΕΧΟΜΕΝΑ 1

Πρόλογος

Οι παρούσες σημειώσεις χρησιμοποιήθηκαν στον πίνακα στις παραδόσεις του μαθήματος Μαθημα-
τικά Ι (ΧΗΜ-011) στο Τμήμα Χημείας του Πανεπιστημίου Κρήτης το χειμερινό εξάμηνο 2025.

• Δεν μπορούν να αποτελέσουν το κύριο ανάγνωσμα για έναν φοιτητή ο οποίος θέλει να δει μία
εισαγωγή στον Απειροστικό Λογισμό. Είναι συνοπτικές σημειώσεις και δεν μπορούν να γίνουν
κατανοητές χωρίς την βοήθεια των αντίστοιχων διαλέξεων και βιβλίων.

• Αυτές οι σημειώσεις είναι μόνο ένας οδηγός για το φοιτητή που θα διαβάσει τα αντίστοιχα
θέματα από τα εξαιρετικά βιβλία της διεθνούς βιβλιογραφίας.

• Υπάρχουν (εκτός απροόπτου) ορισμένα λάθη και θα ήμουν ευγνώμων σε όποιον μου υπεδείκνυε
κάποιο από αυτά.

Σταύρος Κομηνέας

Ηράκλειο, 16 Δεκεμβρίου 2025
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Κεφάλαιο 1

Συναρτήσεις

1.1 Εισαγωγή

Παράδειγμα (Νόμος Arrhenius). Ο ρυθμός k μιας χημικής αντίδρασης συχνά δίνεται από
k = Ae−Ea/RT

όπου T θερμοκρασία, Ea η ενέργεια ενεργοποίησης και A,R σταθερές.

Παράδειγμα (Εξίσωση ιδανικού αερίου). Για να περιγράψουμε ένα αέριο μετράμε
n : ποσότητα σε mole
V : όγκο
p : πίεση
T : θερμοκρασία.

Έχει βρεθεί ότι ισχύει η εξίσωση για το ιδανικό αέριο
pV = nRT

3
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όπου R = 8.31 J/(Kmol).
Μπορούμε να γράψουμε την παραπάνω εξίσωση ως

V =
nRT

p
.

Για παράδειγμα, αν έχουμε ποσότητα αερίου n = 0.1mol σε θερμοκρασία T = 298K και πίεση
p = 105 Pa, αυτό καταλαβάνει όγκο

V =
0.1mol× 8.31 J/(Kmol)× 298K

105 Pa = 2.48× 10−3m3.

Λέμε ότι ο όγκος V είναι μία συνάρτηση των p, T, n και γράφουμε

V = f(p, T, n).

Ο όγκος που βρίσκουμε αλλάζει όταν αλλάζει η τιμή μίας εκ των p, T, n. Μπορούμε επίσης να
γράψουμε

V = V (p, T, n).

• Οι p, T, n λέγονται μεταβλητές, διότι μπορούν να πάρουν διαφορετικές τιμές (π.χ., η θερμο-
κρασία μπορεί να ρυθμιστεί).

• Η R λέγεται σταθερά. Λαμβάνει μέρος στην εξίσωση αλλά έχει την ίδια τιμή για κάθε περί-
πτωση (για κάθε κατάσταση του αερίου).

Διαχωρίζουμε τις μεταβλητές σε δύο κατηγορίες.

• Οι p, T, n είναι ανεξάρτητες μεταβλητές διότι κάθε μία μπορεί να πάρει τιμή ανεξάρτητα από
την άλλη (π.χ., υποθέτουμε ότι με ένα κουμπί ρυθμίζουμε την θερμοκρασία).
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• Η V είναι εξαρτημένη μεταβλητή διότι η τιμή της καθορίζεται από τις τιμές των ανεξάρτητων
μεταβλητών.

Οι μεταβλητές μπορούν να πάρουν κάποιες τιμές αλλά πιθανόν όχι όλες τις τιμές.

• Η πίεση ενός αερίου είναι πάντα θετική, άρα p > 0. Γράφουμε επίσης p ∈ R+.

• Αν υποθέσουμε ότι τα αέριο είναι σε ένα μπαλόνι που σπάει μετά από κάποια πίεση έστω b,
τότε

0 < p < b

και γράφουμε p ∈ [0, b].

• Τα ενεργειακά επίπεδα του ατόμου του Υδρογόνου είναι

E(n) = − 1

2n2
, n = 1, 2, 3, . . .

όπου η μεταβλητή n παίρνει μόνο θετικές ακέραιες τιμές, n ∈ N+.

Ορισμός. Έστω μία μεταβλητή x η οποία λαμβάνει τιμές σε ένα σύνολο A και μία μεταβλητή y η
οποία λαμβάνει τιμές σε ένα σύνολο B. Λέμε ότι η y είναι συνάρτηση του x και γράφουμε

y = f(x), ή y = y(x)

αν σε κάθε x1 του A αντιστοιχίζεται ένα και μόνο y1 του B.

1.1.1 Γραφικές παραστάσεις
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Ζεύγη μεταβλητών x, y μπορούμε να θεωρήσουμε
ότι βρίσκονται σε δύο κάθετες μεταξύ τους ευ-
θείες. Κάθε σημείο P1 του επιπέδου καθορίζε-
ται από δύο αριθμούς x1, y1 επάνω στους άξονες
των x και y αντίστοιχα, όπως στο σχήμα, όπου
P1(x1, y1) = (−3, 2).

Ας δούμε την συνάρτηση

y = x2.

Μπορούμε να την παραστήσουμε σημειώνοντας
στο σύστημα συντεταγμένων όλα τα ζεύγη (x, y)
(δείτε στο σχήμα). Η καμπύλη που προκύπτει
από τα σημεία (x, y) με y = f(x) καλείται γρά‐
φημα της f και σημειώνεται

Gr(f) = (x, f(x)).



1.2. BΑΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 7

1.2 Bασικές συναρτήσεις

1.2.1 Γραμμική συνάρτηση

Έχουμε τον τύπο

y = mx+ b.

Η γραφική παράσταση είναι ευθεία. Τέμνει τους
άξονες στα σημεία (−b/m, 0), (0, b). Γραφική παράσταση της y = 2x− 1.

Αν έχουμε δύο σημεία (x1, y1), (x2, y2) της ευθείας
μπορούμε να βρούμε την κλίση της,

m =
y2 − y1
x2 − x1

= tan θ.

1.2.2 Τετραγωνική συνάρτηση
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Ερώτηση. Τι μπορεί να παριστάνει η συνάρτηση
y = x2;

Ερώτηση. Τι μπορεί να παριστάνει η συνάρτηση
y = x2 + 3x+ 2;

[Για να απαντήσετε, αναπτύξτε το (x+a)(x+ b).]

Έχουμε τον τύπο
y = ax2 + bx+ c, a ̸= 0.

Η γραφική παράσταση είναι μία παραβολή. Τέμνει τον άξονα y στo σημείo (0, c). Τέμνει τον άξονα
x σε σημεία (x1, 0), (x2, 0).

Παράδειγμα. Έστω

y = x2 − 2x− 3 = 0.

Βλέπουμε ότι

x2 − 2x− 3 = (x+ 1)(x− 3).

Άρα y = 0 ⇒ x = −1, x = 3. Γραφική παράσταση της y = x2 − 2x− 3.
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Για τη γενική λύση της y = 0 ορίζουμε την διακρίνουσα D = b2 − 4ac και έχουμε λύσεις x = x1,2
όπου

x1,2 =
−b±

√
D

2a
, αν D > 0.

x1,2 = − b

2a
, αν D = 0.

Δεν έχουμε λύση, αν D < 0.

Ερώτηση. Σε ποια σημεία τέμνει τον άξονα x η γραφική παράσταση για D > 0, D = 0, D < 0;

1.2.3 Πολυωνυμική συνάρτηση

Η πολυωνυμική συνάρτηση βαθμού n έχει τύπο

p(x) = a0 + a1x+ · · ·+ anx
n =

n∑
i=0

aix
i, an ̸= 0.

Για παράδειγμα, p(x) = x3 + 2x+ 1.

Παρατήρηση 1.1. Η γραμμική και η τετραγωνική συνάρτηση είναι πολυωνυμικές συναρτήσεις
πρώτου και δευτέρου βαθμού αντίστοιχα.
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1.2.4 Τριγωνομετρικές συναρτήσεις

Οι τριγωνομετρικές συναρτήσεις ορίζονται με την βοήθεια ορθογωνίου τριγώνου ή επάνω στον
τριγωνομετρικό κύκλο (δώστε σχήμα). Αν θ είναι η γωνία μίας ακτίνας του κύκλου, τότε

sin θ = y

cos θ = x

tan θ =
y

x
.

Οι συναρτήσεις ημιτόνου και συνημιτόνου είναι περιοδικές. (Δώστε σχήμα. Εξηγήστε γιατί είναι
περιοδικές.)

Ερώτηση. Πού ορίζεται η συνάρτηση εφαπτομένης (ποιο το πεδίο ορισμού της);

Ερώτηση. Δείτε ότι sin(π/6) = 1/2, sin(π/3) =
√
3/2.

Παράδειγμα (Αρμονική ταλάντωση). Μία μάζα σε ένα ελατήριο κάνει αρμονική ταλάντωση, δηλαδή,
η θέση της ως συνάρτηση του χρόνου δίνεται από

x(t) = A cos(ωt)

όπου A,ω είναι σταθερές (εξηγήστε τι δίνουν).

Παράδειγμα (Κύμα). Ένα κύμα είναι συνάρτηση του χώρου x και του χρόνου t. Ένα αρμονικό κύμα
δίνεται από

ϕ(x, t) = A sin
[
2π
(x
λ
− νt

)]
όπου λ είναι το μήκος κύματος και ν η συχνότητα του κύματος.
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Τριγωνομετρικοί τύποι

sin(−θ) = − sin θ, cos(−θ) = cos θ.

sin(π − θ) = sin θ, cos(π − θ) = − cos θ.

sin2 θ + cos2 θ = 1.

cos(a+ b) = cos a cos b− sin a sin b, sin(a+ b) = sin a cos b+ cos a sin b.

1.2.5 Εκθετική συνάρτηση

Μία εκθετική συνάρτηση είναι η
f(x) = ax

όπου a λέγεται βάση. Για παράδειγμα, f(x) = 10x.
Η εκθετική συνάρτηση (που χρησιμοποιείται ευρέως στις φυσικές επιστήμες) είναι η

exp(x) = ex

όπου e ≈ 2.72 είναι ο αριθμός του Euler (ή βάση των νεπερείων λογαρίθμων). Μπορεί να οριστεί
ως

ex =
∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · .

Παρατήρηση 1.2. Η εκθετική συνάρτηση είναι η μοναδική με την ιδιότητα: ο ρυθμός μεταβολής
του y = ex ως προς x είναι y.
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Παράδειγμα. Η εκθετική συνάρτηση περιγράφει, π.χ., την αύξηση του πληθυσμού βακτηρίων, ιών
κλπ.

Είναι ex1+x2 = ex1ex2 και e−x = 1/ex.

Ερώτηση. Σχεδιάστε την γραφική παράσταση των f(x) = e±x.

Παράδειγμα. Μπορούμε να ορίσουμε την εκθετική συνάρτηση ekt. Είναι ταχύτερη ή βραδύτερη από
την et αναλόγως αν k > 1 ή 0 < k < 1. Η σταθερά k δίνει τον ρυθμό της διαδικασίας (π.χ., ρυθμός
αντίδρασης).

Ερώτηση. Η κάθε νότα μίας οκτάβας έχει διπλά-
σια συχνότητα από την αντίστοιχη νότα της προη-
γούμενες οκτάβας.
Δείτε πώς αυτό παριστάνεται στο δίπλα σχήμα
όπουο βλέπουμε τα πλήκτρα ενός πιάνου. Ση-
μειώστε ότι τα χρώματα που βλέπουμε παρι-
στάνουν την ένταση των αρμονικών που παράγει
ένας άνθρωπος που παράγει φωνήεντα.
Πώς εκφράζεται η σχέση των συχνοτήτων διαδο-
χικών οκτάβων ως μία εκθετική συνάρτηση;

Υπερβολικές συναρτήσεις

Κατασκευάζονται από την εκθετική.
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• Υπερβολικό συνημίτονο

coshx =
ex + e−x

2
.

• Υπερβολικό ημίτονο

sinhx =
ex − e−x

2
.

Δείτε ότι δεν είναι περιοδικές συναρτήσεις. Ισχύει

cosh2 x− sinh2 x = 1.

Ερώτηση. Δείτε αν οι υπερβολικές συναρτήσεις είναι άρτιες ή περιττές. (Αναζητήστε πρώτα τον
ορισμό μιας άρτιας και μιας περιττής συνάρτησης.)

1.2.6 Αντίστροφη συνάρτησης

Για τη γραμμική συνάρτηση, π.χ., y = 5x + 1 παίρνουμε ένα y για κάθε x. Αν λύσουμε ως προς x

παίρνουμε
x =

y − 1

3
δηλαδή, για κάθε y παίρνουμε ένα x. Λέμε ότι η παραπάνω συνάρτηση x(y) είναι η αντίστροφη της
y(x).

Ερώτηση. Σχεδιάστε την γραφική παράσταση των y = x3, y = x2, y =
√
x και από αυτές εξάγετε

τις γραφικές παραστάσεις των αντιστρόφων (αν υπάρχουν).

Για κάθε συνάρτηση που είναι 1-1 (ένα προς ένα)

x1 ̸= x2 ⇒ y1 ̸= y2
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υπάρχει η αντίστροφή της. Τότε, η y = f(x) λέγεται αντιστρέψιμη με αντίστροφη f−1 και γράφομε

y = f(x) ⇒ x = f−1(y).

Ερώτηση. Μπορούμε να ορίσουμε αντίστροφες των συναρτήσεων sinx, cosx? (Αυτές λέγονται arcsin, arccos.)

Ερώτηση. Είπαμε ότι μία συνάρτηση σε κάθε x αντιστοιχίζει έναν και μόνο y = f(x). Πώς μπορούμε
να το ελέγξουμε αυτό χρησιμοποιώντας την γραφική παράσταση της f(x);

1.2.7 Λογάριθμος

Η συνάρτηση του λογαρίθμου ορίζεται ως η αντίστροφη της εκθετικής. Για τον φυσικό λογάριθμο
γράφουμε

y = lnx ⇔ x = ey.

(Σχεδιάστε τις γραφικές παραστάσεις τους.)
Χρήσιμες σχέσεις.

• ln(1) = 0.

• ln(e) = 1.

• ln(x1x2) = ln(x1) + ln(x2) και ln(x1/x2) = ln(x1)− ln(x2).

• ln(xn) = n ln(x).

Παρατήρηση 1.3. Δείτε ότι ο λογάριθμος ορίζεται μόνο για x > 0.

Ο δεκαδικός λογάριθμος log10 ή απλώς log είναι ο αντίστροφος της εκθετικής f(x) = 10x.
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Παράδειγμα. Μία εφαρμογή στην Χημεία είναι ο ορισμός

pH = − log[H+].

Αν η συγκέντρωση ιόντων Υδρογόνου (σε μονάδες moles per litre) είναι H+ = 10−7 τότε log[H+] = −7
και pH = 7.

1.2.8 Συναρτήσεις πολλών μεταβλητών

Μία συνάρτηση μπορεί να εξαρτάται από πολλές μεταβλητές. Για παράδειγμα

V = V (n, T, P ) =
nRT

p
.

Ερώτηση. (α) Πώς εξαρτάται ο όγκος V από την θερμοκρασία T ; (β) Πώς εξαρτάται ο όγκος V

από την πίεση p;

1.2.9 Πεπλεγμένες συναρτήσεις

Ας σκεφτούμε ποιο είναι το y αν ικανοποιεί την x2+ y2 = 1. Η σχέση αυτή μπορεί να δώσει το y(x).
Ένα άλλο παράδειγμα είναι η (φύλλο του Καρτέσιου)

x3 + y3 − 9xy = 0.

Μπορούμε να διερευνήσουμε αν αυτή δίνει κάποιο y(x).
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Κεφάλαιο 2

Παράγωγοι

2.1 Συνέχεια

2.1.1 Όρια

Εδώ έχουμε μια θεμελιώδη ιδέα του λογισμού.
Ακολουθούμε τις σημειώσεις Ι. Πλατή [3], κεφ. 2.1.

2.1.2 Συνέχεια συνάρτησης

Μία συνάρτηση f(x) λέγεται συνεχής σε σημείο x0 αν

lim
x→x0

f(x) = f(x0).

Για παράδειγμα, αν f(x) = x2, τότε
lim
x→3

f(x) = 9 = f(3).

17
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Προσοχή! Η έννοια της συνέχειας δεν έχει νόημα αν το x0 δεν ανήκει στο πεδίο ορισμού της f . Μία

Παρατήρηση 2.1. Η συνέχεια μιας f στο x0 σημαίνει ότι η γραφική παράστασή της δεν κόβεται στο
(x0, f(x0)). Μία συνάρτηση λέγεται συνεχής αν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού
της. Άρα μία συνεχής συνάρτηση μπορεί να σχεδιαστεί χωρίς να χρειαστεί να σηκώσουμε το
μολύβι από το χαρτί.

Το σχήμα σείχνει την συνάρτηση βήματος: εμφα-
νίζει ασυνέχεια στην αρχή των αξόνων.

Ας δούμε την περίπτωση σημείου που δεν ανήκει στο πεδίο ορισμού αλλά μπορεί να ορισθεί όριο,
π.χ., limx→0(sinx/x) = 1. Όμως, η συνάρτηση δεν ορίζεται στο 0. Μπορούμε να επεκτείνουμε την
συνάρτηση ορίζοντας νέα συνάρτηση ως εξής

f(x) =

{
sinx
x x ̸= 0

1 x = 0.
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Ιδιότητες συνεχών συναρτήσεων: Αν f, g είναι συνεχείς και οι δύο σε σημείο x0 (το οποίο ανήκει στο
πεδίο ορισμού και των δύο) τότε είναι συνεχείς και οι (k ∈ R)

f ± g, kf, f · g, f/g.

2.2 Ρυθμός μεταβολής

Έχουμε δει την κλίση ευθείας

Κλίση = y2 − y1
x2 − x1

.

Μία καμπύλη έχει επίσης κλίση, αλλά αυτή μπορεί να είναι διαφορετική σε κάθε σημείο της.
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Μπορούμε να χρησιμοποιήσουμε έναν παρόμοιο τύπο για την κλίση μίας καμπύλης κοντά σε σημείο
P (x0, f(x0)). Παίρνουμε σημείο Q(x1, f(x1)) κοντά στο P και γράφουμε

Κλίση κοντά στο σημείο P =
f(x1)− f(x0)

x1 − x0
.

Είναι πιο χρήσιμο να γράψουμε x1 = x0 + h και

Κλίση κοντά στο σημείο P =
f(x0 + h)− f(x0)

h
.

Ορισμός (Παράγωγος). Η κλίση ακριβώς στο P είναι το όριο

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

και είναι ο ρυθμός μεταβολής του y = f(x) με το x στο σημείο x0. Αυτός ο ρυθμός μεταβολής
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καλείται παράγωγος και συμβολίζεται

dy

dx
(x0) =

df

dx
(x0) = ḟ(x0) = f ′(x0).

Παρατήρηση 2.2. Η παράγωγος f ′(x0) δίνει την κλίση της εφαπτομένης στην καμπύλη y = f(x)
στο σημείο x0, f(x0).

Παράδειγμα. Ας θεωρήσουμε την
f(x) = x2.

Αν σχεδιάσουμε την καμπύλη y = x2 βλέπουμε ότι η κλίση της καμπύλης αυξάνει με το x.
Μπορούμε να βρούμε την παράγωγο της f(x) χρησιμοποιώντας τον ορισμό,

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

2xh+ h2

h
= lim

h→0
(2x+ h) = 2x.

Παρατήρηση 2.3. Η παράγωγος f ′(x) μίας συνάρτησης f(x) ορίζεται σε κάθε σημείο x (στο πεδίο
ορισμού της f) και άρα είναι και αυτή μία συνάρτηση.

Η εφαπτομένη σε ένα σημείο (x0, f(x0)) έχει τύπο

f ′(x0) =
y − f(x0)

x− x0
⇒ y = f(x0) + f ′(x0)(x− x0).

Αυτή δίνει την γραμμική (αφφινική) προσέγγιση της συνάρτησης κοντά στο σημείο (x, f(x)).

Παράδειγμα. Μπορούμε να βρούμε την παράγωγο της f(x) =
√
x (δείτε βιβλίο Thomas [1], κεφ.

3.2, παράδειγμα 2) και είναι
f ′(x) =

1

2
√
x
.



22 ΚΕΦΑΛΑΙΟ 2. ΠΑΡΑΓΩΓΟΙ

Ειδικότερα, στο σημείο x = 0 έχουμε

f ′(x = 0) = lim
h→0

√
h− 0

h
= lim

h→0

1√
h
→ ∞.

Άρα, η συνάρτηση δεν είναι παραγωγίσιμη στο x = 0. Όμως δέχεται εφαπτόμενη, την ευθεία x = 0.

Ερώτηση. Κάνετε γραφική παράσταση της f(x) =
√
x και της παραγώγου της f ′(x).

Παράδειγμα. Θεωρούμε την συνάρτηση f(x) = |x| η οποία γράφεται και ως

f(x) =

{
−x, x ≤ 0,

x, x > 0.
.

Δείτε (αφού κάνετε την γραφική παράσταση) ότι η συνάρτηση αυτή είναι συνεχής. Η εφαπτομένη
της για x > 0 έχει κλίση 1 και για x < 0 έχει κλίση −1. Στο x = 0 η παράγωγος της f δεν ορίζεται.

• Αποδεικνύεται ότι κάθε παραγωγίσιμη συνάρτηση στο x0 είναι και συνεχής στο x0.

• Κάθε συνεχής συνάρτηση στο x0 δεν είναι βέβαιο ότι είναι και παραγωγίσιμή στο x0 (όπως
είδαμε στο προηγούμενο παράδειγμα).

2.3 Κανόνες παραγώγισης

Αφού χρησιμοποιήσουμε τον ορισμό της παραγώγου, μπορούμε να εξάγουμε τους ακόλουθους χρή-
σιμους κανόνες παραγώγισης.
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Κανόνες για πολυώνυμα.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f f ′

c 0

x 1

x2 2x

x3 3x2

. . . . . .

xn nxn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
• Άθροισμα συναρτήσεων

d(f + g)

dx
=

df

dx
+

dg

dx
.

• Βαθμωτό γινόμενο

d(kf)

dx
= k

df

dx
, k ∈ R.

• Γινόμενο

d(f · g)
dx

= g
df

dx
+ f

dg

dx
.

• Πηλίκο

d(f/g)

dx
=

g df
dx − f dg

dx

g2
.

Ερώτηση. Βρείτε την παράγωγο της (1/f).

2.3.1 Παράγωγοι βασικών συναρτήσεων

Παράγωγοι τριγωνομετρικών συναρτήσεων

∣∣∣∣∣∣∣∣
f f ′

sinx cosx
cosx − sinx

∣∣∣∣∣∣∣∣
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Ερώτηση. Βρείτε την παράγωγο της tan x χρησιμοποιώντας τον κανόνα αλυσίδας (ή τον κανόνα
πηλίκου).

Παράγωγος εκθετικής συνάρτησης

Ξεκινάμε από την σειρά

ex = 1 + x+
x2

2
+

x3

3!
+ . . .

και παραγωγίζουμε έναν έναν τους όρους του πολυωνύμου,

d(ex)

dx
= 0 + 1 +

2x

2
+

3x2

3!
+

4x3

4!
+ . . . = 1 + x+

x2

2
+

x3

3!
+ . . . ,

άρα βρίσκουμε ότι για την f(x) = ex

df

dx
= f.

Παράδειγμα. Μία εξίσωση της μορφής

dN

dt
= N

δίνει τον ρυθμό αύξησης ζωντανών οργανισμών (π.χ., κορωνοϊού, κουνελιών, εντόμων κλπ). Είδαμε
ότι η (t) = et έχει παράγωγο .
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Παράγωγοι υπερβολικών συναρτήσεων

∣∣∣∣∣∣∣∣
f f ′

sinhx coshx
coshx sinhx

∣∣∣∣∣∣∣∣
Ερώτηση. Βρείτε την παράγωγο της tanhx χρησιμοποιώντας τον κανόνα πηλίκου.

Παράγωγος λογαριθμικής συνάρτησης

Ο ορισμός της αντίστροφης συνάρτησης είναι
y = f(x) ⇔ x = f−1(y).

Παίρνουμε την παράγωγο της αντίστροφης ως προς y,
dx

dy
=

df−1

dy
⇒ df−1

dy
=

1

dy/dx
=

1

f ′(x)
.

Για τον λογάριθμο έχουμε (y = ex, ln y = x)
d(ln y)
dy

=
1

d(ex)/dx
=

1

ex
=

1

y
.

Συνήθως γράφουμε

(lnx)′ = d(lnx)
dx

=
1

x
, x > 0.

[Για την παράγωγο της αντίστροφης συνάρτησης μπορείτε να δείτε π.χ., στο βιβλίο W. Briggs, κεφ.
7.1, θεώρημα 7.3.]
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Παράγωγος άρτιας και περιττής συνάρτησης

Η παράγωγος μία άρτιας συνάρτησης είναι περιττή συνάρτηση.

Ερώτηση. Γράψτε μία άρτια πολυωνυμική συνάρτηση και βρείτε την παράγωγό της.

Η παράγωγος μία περιττής συνάρτησης είναι άρτια συνάρτηση.

Ερώτηση. Γράψτε μία περιττή πολυωνυμική συνάρτηση και βρείτε την παράγωγό της.

2.3.2 Αλυσιδωτή παραγώγιση

Για μία συνάρτηση όπως η
y = (x2 + 1)3/2

φαίνεται δύσκολο να κάνουμε την παραγώγιση. Μπορούμε όμως να την γράψουμε

y = u3/2, u = x2 + 1.

Τώρα η y είναι συνάρτηση του u και η u είναι συνάρτηση του x.
Ο κανόνας της αλυσίδας μας λέει πώς μπορούμε να παραγωγίσουμε την y ως προς την x,

dy

dx
=

dy

du
· du
dx

.

Στο παραπάνω παράδειγμα έχουμε

dy

du
=

3

2
u1/2,

du

dx
= 2x −→ dy

dx
=

3

2
u1/2 2x =

3

2
(x2 + 1)1/2 2x = 3x(x2 + 1).
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Παράδειγμα. Ένα ολοστρόγγυλο μπαλόνι φουσκώνει και η ακτίνα του αυξάνει σύμφωνα με την
r = 2t. Για να βρούμε τον ρυθμόςαύξησης του όγκου του γράφουμε

V =
4

3
πr3

Παραγωγίζουμε τον όγκο και έχουμε

dV

dt
=

dV

dr

dr

dt
= 4πr2

dr

dt
= 8πr2.

Παράδειγμα. Μία εξίσωση της μορφής

dx

dt
= ax, a θετική σταθερά

δίνει τον ρυθμό αύξησης ζωντανών οργανισμών (π.χ., κορωνοϊού, κουνελιών, εντόμων κλπ). Δείτε
ότι η x(t) = eat έχει παράγωγο ax.

Παράδειγμα. Μία εξίσωση της μορφής

dx

dt
= −kx, k θετική σταθερά

δίνει τον ρυθμό μείωσης μιας ραδιενεργής ποσότητας. Δείτε ότι η x(t) = e−kt έχει παράγωγο −kx.

Ερώτηση. Βρείτε τις παραγώγους των sinhx, coshx.

2.3.3 Παράγωγοι ανώτερης τάξης

Αφού η παράγωγος dy/dx μία συνάρτησης y = f(x) είναι και η ίδια μία συνάρτηση, θα μπορούσε κι
αυτή να παραγωγιστεί, οπότε παίρνουμε την f ′′(x). Γράφουμε την δεύτερη παράγωγο (παράγωγο
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της παραγώγου) ως
d

dx

(
dy

dx

)
=

d2y

dx2
.

Με ανάλογο τρόπο μπορούμε να πάρουμε την τρίτη παράγωγο, κλπ.

Παράδειγμα. (Ταχύτητα και επιτάχυνση) Αν η θέση ενός σωματίου είναι y = y(t), όπου t είναι ο
χρόνος, τότε η ταχύτητα είναι

v(t) =
dy

dt
.

Ο ρυθμός μεταβολής της ταχύτητας είναι η επιτάχυνση

a(t) =
dv

dt
=

d2y

dt2
.

Ας δώσουμε ένα συγκεκριμένο παράδειγμα. Ένα σώμα πέφτει και η θέση του δίνεται από την
y = y0 − 1

2gt
2. Η ταχύτητά του είναι ο ρυθμός μεταβολής της θέσης του,

v ≡ dy

dt
= −gt.

Ο ρυθμός μεταβολής της ταχύτητας είναι η παράγωγος
dv

dt
=

d

dt

(
dy

dt

)
= −g, ή d2y

dt2
= −g.

2.4 Χρήσεις των παραγώγων

2.4.1 Μέγιστα, ελάχιστα, σημεία καμπής

Ας υποθέσουμε ότι έχουμε μία συνάρτηση y = y(x) η οποία είναι δύο φορές παραγωγίσιμη.
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Αν μία συνάρτηση είναι μονότονη τότε μπορεί να είναι

• Αύξουσα, οπότε dy/dx ≥ 0.

• Φθίνουσα, οπότε dy/dx ≤ 0.

Ορισμός. Έστω c ένα εσωτερικό σημείο διαστήματος I στο οποίο ορίζεται μία συνάρτηση f . Εάν
f(c) ≥ f(x) για κάθε x στο I , τότε f(c) είναι ένα τοπικό μέγιστο της f . Εάν f(c) ≤ f(x) για κάθε
x στο I , τότε f(c) είναι ένα τοπικό ελάχιστο της f . (Τα μέγιστα και ελάχιστα λέγονται επίσης
ακρότατα.)

Θεώρημα. Αν μία παραγωγίσιμη συνάρτηση f έχει τοπικό ελάχιστο ή μέγιστο σε ένα εσωτερικό
σημείο c του πεδίου ορισμού της, τότε

f ′(c) = 0.

Ορισμός. Ένα εσωτερικό σημείο c του πεδίου ορισμού μίας συνάρτησης f στο οποίο f ′(c) = 0
λέγεται κρίσιμο σημείο της f .

• Για να είναι ένα κρίσιμο σημείο μέγιστο, πρέπει η τιμή της παραγώγου να αλλάζει από θετική
(αριστερά του σημείου) σε αρνητική (δεξιά του σημείου).

• Για να είναι ένα κρίσιμο σημείο ελάχιστο, πρέπει η τιμή της παραγώγου να αλλάζει από
αρνητική σε θετική.

• Εάν η f ′ είναι θετική (ή αρνητική) και στις δύο πλευρές κοντά στο c, τότε η f δεν έχει τοπικό
ακρότατο στο c.

Μπορούμε να διατυπώσουμε το εξής κριτήριο. Για τα κρίσιμα σημεία της f , έχουμε τις εξής περι-
πτώσεις
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• d2f/dx2 < 0, τότε έχουμε μέγιστο.

• d2f/dx2 > 0, τότε έχουμε ελάχιστο.

• d2f/dx2 = 0, τότε το κριτήριο αποτυγχάνει.

Αν το πρόσημο της 2ης παραγώγου αλλάζει στο κρίσιμο σημείο, τότε αυτό είναι σημείο καμπής.

Παράδειγμα. Για την συνάρτηση f(x) = x2 έχουμε f ′(x) = 0 ⇒ 2x = 0, δηλαδή έχει ένα μόνο κρίσιμο
σημείο στο x = 0. Είναι f ′′(x) = 2, άρα στο x = 0 είναι f ′′(0) > 0. Άρα η f(x) έχει ελάχιστο στο
x = 0.

Παράδειγμα. Για την συνάρτηση f(x) = x − x2 έχουμε f ′(x) = 0 ⇒ 1 − 2x = 0 ⇒ x = 1/2, δηλαδή
έχει ένα μόνο κρίσιμο σημείο στο x = 1/2. Είναι f ′′(x) = −2, άρα στο x = 1/2 είναι f ′′(0) < 0. Άρα
η f(x) έχει μέγιστο στο x = 1/2.

Παράδειγμα. Για την συνάρτηση f(x) = x3 έχουμε f ′(x) = 0 ⇒ 3x2 = 0, δηλαδή έχει ένα μόνο
κρίσιμο σημείο στο x = 0. Είναι f ′′(x) = 6x, άρα στο x = 0 είναι f ′′(0) = 0. Άρα η f(x) έχει σημείο
καμπής στο x = 0.

Παράδειγμα. Ας βρούμε τα κρίσιμα σημεία της συνάρτησης f(x) = x3− 3x+2. Έχουμε f ′(x) = 0 ⇒
3x2 − 3 = 0 ⇒ x = ±1. Είναι f ′′(x) = 6x, άρα στο f ′′(±1) = ±6. Άρα η f(x) έχει ένα μέγιστο στο
x = −1 και ένα ελάχιστο στο x = 1.

Ερώτηση. Πόσα κρίσιμα σημεία μπορεί να έχει μια πολυωνυμική συνάρτηση 3ου βαθμού;

Ερώτηση. Για την συνάρτηση f(x) = x4, τι σημείο είναι το x = 0;

Ερώτηση. Έστω ότι μία συνάρτηση έχει παράγωγο f ′(x) > 0 σε όλο το πεδίο ορισμού της. Τι
μπορούμε να πούμε για την μονοτονία της;
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2.4.2 Σχεδίαση γραφημάτων

• Βρίσκουμε τις παραγώγους y′, y′′ και προσδιορίζουμε τα κρίσιμα σημεία (μέγιστα, ελάχιστα,
σημεία καμπής).

• Εξετάζουμε την συμπεριφορά της y στα ±∞, δηλαδή, εξετάζουμε για οριζόντιες ασυμπτώτους.

• Βρίσκουμε τις τιμές μηδενισμού της y, δηλαδή, τα σημεία τομής με τον άξονα των x. Βρίσκουμε
την y(0), δηλαδή, το σημείο τομής με τον άξονα των y.

Παράδειγμα. Δείτε την f(x) = x3 − x.

Παράδειγμα. Δείτε την

y =
x2 − 3x+ 2

x2 + 3x+ 2
, x ̸= −1, 2.

(Σημειώσεις Ι.Δ. Πλατή, κεφ. 2.6.3.)

2.4.3 Διαφορικά

Αν μία συνάρτηση y = f(x) είναι διαφορίσιμη, τότε η παράγωγός της είναι

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Αυτό μπορεί να γραφεί ως (αν θεωρήσουμε ένα μικρό h)

f(x+ h) = f(x) + hf ′(x).

Για μεταβολή ∆x = h, η μεταβολή της f είναι

∆y = f(x+ h)− f(x)
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και έχουμε
∆y = f ′(x)∆x.

Σημειώστε ότι οι παραπάνω σχέσεις είνα προσεγγιστικές.

Παράδειγμα. Ο όγκος σφαίρας ακτίνας r είναι

V =
4

3
πr3.

Αν η ακτίνα μεταβληθεί κατά λίγο, έστω ∆r, τότε ο όγκος της σφαίρας μεταβάλλεται κατά ∆V
όπου

∆V ≈ dV

dr
∆r = 4πr2∆r.

Η πραγματική μεταβολή του όγκου της σφαίρας είναι

∆V = V (r +∆r)− V (r) =
4

3
π(r +∆r)3 − 4

3
πr3 = . . . = 4πr2∆r + 4πr(∆r)2 +

4

3
π(∆r)3.

Ερώτηση. Ποιος είναι ο όγκος σφαιρικού κελύφους ακτίνας r με πάχος ∆r;

Ερώτηση. Μια συνταγή μαγειρικής λέει να χρησιμοποιήσετε στρογγυλό ταψί διαμέτρου 22 cm ενώ
το μοναδικό σας ταψί είναι 24 cm. Πόσο % είναι το σφάλμα που κάνετε στην εκτέλεση της συνταγής;

Ορισμός. Έστω y = f(x) διαφορίσιμη συνάρτηση. Το διαφορικό dx είναι μία απειροστή μεταβολή
της ανεξάρτητης μεταβλητής x. Το διαφορικό dy ισούται με

dy = f ′(x) dx.

(Το διαφορικό είναι μια μεταβολή στο όριο και η παραπάνω σχέση θεωρείται ισότητα.)
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2.4.4 Παραγώγιση πεπλεγμένων συναρτήσεων

Ας βρούμε την παράγωγο της y(x) η οποία ορίζεται από την

x2 + y2 = 1.

[Δείτε W. Briggs [2], κεφ. 3.8, παράδειγμα 1.]
Ας βρούμε την παράγωγο της y(x) η οποία ορίζεται από την

x2 + xy − y3 = 7.

[Δείτε W. Briggs [2], κεφ. 3.8, παράδειγμα 3.]
Ας βρούμε την παράγωγο της y(x) η οποία ορίζεται από την

y2 − 2xy + 1 = 0.
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Κεφάλαιο 3

Ολοκλήρωση

3.1 Το αόριστο ολοκλήρωμα

Εάν υποθέσουμε ότι γνωρίζουμε τον ρυθμό μεταβολής f(x) μία συνάρτησης (την παράγωγό της),
θα ήταν μήπως δυνατόν να βρούμε ποια είναι η συνάρτηση αυτή, έστω F (x); (τότε θα είναι F ′ = f .)

Ορισμός. Μία συνάρτηση F (x) λέγεται αντιπαράγωγος (ή παράγουσα) της f(x) εάν

F ′(x) = f(x), ή dF

dx
= f(x).

Παράδειγμα. Αν γνωρίζουμε την επιτάχυνση ενός κινητού a(t) = dv/dt, θα μπορούσαμε να βρούμε
την ταχύτητά του v(t); Ως συγκεκριμένο παράδειγμα, ας υποθέσουμε ότι a = c είναι σταθερά, οπότε
θα έχουμε v(t) = ct.

Παρατήρηση 3.1. Το ερώτημα στην γενικότητά του, έχει ιδιαίτερα περίπλοκη απάντηση.

Παρατηρήστε ότι κάθε συνάρτηση της μορφής F (x) + c (όπου c είναι σταθερά), είναι επίσης παρά-

35



36 ΚΕΦΑΛΑΙΟ 3. ΟΛΟΚΛΗΡΩΣΗ

γουσα της f .

Ορισμός. Ονομάζουμε το ακόλουθο

∫
f(x)dx = F (x) + c

αόριστο ολοκλήρωμα. Είναι μία μονοπαραμετρική οικογένεια παραγουσών της f . Η f(x) λέγεται
ολοκληρωταία.

3.1.1 Ολοκληρώματα κάποιων βασικών συναρτήσεων

Για να βρούμε ένα αόριστο ολοκλήρωμα (ή μία αντιπαράγωγο) σκεφτόμαστε ως εξής: ποια συνάρτηση αν παραγωγιστή δίνει την f ;
Την απάντηση για κάποιες περιπτώσεις παίρνουμε από τους πίνακες παραγώγισης στοιχειωδών
συναρτήσεων που ήδη έχουμε δει.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f F

0 c

1 x

xn xn+1

n+1 , n ̸= −1
1
x ln |x|

sinx − cosx
cosx sinx

1
cos2 x tanx

1√
1−x2

arcsinx
ex ex

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Η βασική ιδιότητα του αορίστου ολοκληρώματος είναι η∫

[λf(x) + µg(x)] dx = λ

∫
f(x) dx+ µ

∫
g(x) dx, λ, µ ∈ R.

Παράδειγμα. Θα βρούμε το ολοκλήρωμα∫
(3x3 + 2− 5

√
x) dx.

Έχουμε άθροισμα ολοκληρωμάτων, ώστε∫
(3x3 + 2− 5

√
x) dx =

∫
3x3 dx+ 2

∫
dx− 5

∫ √
x dx = x2 + 2x− 10

3
x3/2.

Παράδειγμα. Θα βρούμε το ολοκλήρωμα ∫
sin(3x) dx.
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Ξεκινάμε από την παρατήρηση ότι

d

dx
cos(3x) = −3 sin(3x)

άρα

d

dx

[
−1

3
cos(3x)

]
= sin(3x) ⇒

∫
sin(3x) dx = −1

3
cos(3x).

3.2 Το ορισμένο ολοκλήρωμα

3.2.1 Εμβαδό χωρίου

Παράδειγμα. Αν υποθέσουμε ότι ένα αυτοκίνητο τρέχει με σταθερή ταχύτητα v = c, τότε σε χρόνο t

έχει διανύσει απόσταση x = ct. Παρατηρήστε ότι αυτό ισούται με το εμβαδό κάτω από την γραφική
παράσταση v = v(t). Επίσης, το ct δίνεται από το ολοκλήρωμα

∫
v(t)dt (με κατάλληλη επιλογή της

σταθεράς στο ολοκλήρωμα).

Συνεχίζοντας το παράδειγμα, μπορούμε να υποθέσουμε ένα αυτοκίνητο το οποίο τρέχει με ταχύτητα
v = c1 για χρόνο 0 < t < t1 και ακολούθως τρέχει με v = c2 για χρόνο t1 < t < t2. Η θέση του στον
τελικό χρονο είναι x = c1t1+c2t2, κάτι που ισούται με τον εμβαδό κάτω από την γραφική παράσταση
v = v(t) (κάνετε σχήμα).
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Για κάθε συνάρτηση y = f(x) μπορούμε να βρούμε το εμβαδό κάτω από το γράφημα, παίρνοντας
διαδοχικά σημεία x0, x1, x2, . . . και αντίστοιχα y0, y1, y2, . . . και αθροίζοντας τα εμβαδά x0y0 + x1y1 +
x2y2 + . . ..

Ορισμός (Κανονική διαμέριση). Υποθέτουμε ένα διάστημα [a, b] και διαδοχικά σημεία x0, x1, . . . , xn

τέτοια ώστε x0 = a, xn = b και η απόσταση διαδοχικών σημείων είναι ∆x = b−a
n . Λέμε ότι έχουμε

μία κανονική διαμέριση του διαστήματος [a, b]. Δείτε ότι είναι

xk = a+ k∆x, k = 1, 2, . . . , n.

Ορισμός (Άθροισμα Riemann). Έστω f(x) η οποία ορίζεται σε διάστημα [a, b] και μία κανονική
διαμέριση του διαστήματος. Παίρνουμε ξ1, ξ2, . . . , ξn εντός των διαστημάτων [xk−1, xk] και θεωρούμε
το άθροισμα

n∑
k=1

f(ξk)∆x.
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Αυτό λέγεται άθροισμα Riemann. Δίνει προσέγγιση του εμβαδού του χωρίου κάτω από την γραφική
παράσταση της f(x) στο διάστημα [a, b].

Παρατήρηση 3.2. Αν μία συνάρτηση παίρνει θετικές και αρνητικές τιμές στο [a, b] τότε το άθροισμα
Riemann δίνει το καθαρό εμβαδό κάτω από το γράφημα, δηλαδή δίνει το εμβαδό στην περιοχή
που f(x) > 0 μείον το έμβαδό στην περιοχή όπου f(x) < 0.

Για να βρούμε το ακριβές εμβαδό πρέπει να πάρουμε

εμβαδό = lim
n→∞

n∑
k=1

f(ξk)∆x.

Ορισμός (Ορισμένο ολοκλήρωμα). Μία συνάρτηση f ορισμένη στο [a, b] είναι ολοκληρώσιμη εάν το
limn→∞

∑n
k=1 f(ξk)∆x υπάρχει για κάθε επιλογή των ξk. Αυτό λέγεται ορισμένο ολοκλήρωμα της f

από το a στο b και γράφεται ∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ξk)∆x.

Παράδειγμα (Χρήση γεωμετρίας). Θα υπολογίσουμε το ορισμένο ολοκλήρωμα∫ 4

2

(2x+ 3) dx

με γεωμετρικό υπολογισμό του εμβαδού κάτω από την γραφική παράσταση. Πρόκειται για το
εμβαδό τραπεζίου.

3.2.2 Ιδιότητες ορισμένων ολοκληρωμάτων

•
∫ b

a f(x) dx = −
∫ a

b f(x) dx.



3.2. ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ 41

•
∫ a

a f(x) dx = 0.

•
∫ b

a [f(x) + g(x)] dx =
∫ b

a f(x) dx+
∫ b

a g(x) dx.

•
∫ b

a cf(x) dx = c
∫ b

a f(x) dx.

•
∫ b

a f(x) dx =
∫ p

a f(x) dx+
∫ b

p f(x) dx.

• Εάν f(x) ≤ g(x) στο [a, b], τότε
∫ b

a f(x) dx ≤
∫ b

a g(x) dx.

• Ανισότητα max-min. Αν maxf, minf είναι η μέγιστη και ελάχιστη τιμή της f στο [a, b], τότε

(minf)(b− a) ≤
∫ b

a

f(x) dx ≤ (maxf)(b− a).

Παράδειγμα. Έστω συνάρτηση f για την οποία γνωρίζουμε τα ορισμένα ολοκληρώματα
∫ 5

0 f(x) dx =

3 και
∫ 7

0 f(x) dx = 10 Μπορούμε να βρούμε ότι∫ 5

0

4f(x) dx = 4

∫ 5

0

f(x) dx = 12.

Επίσης ∫ 7

5

f(x) dx =

∫ 0

5

f(x) dx+

∫ 7

0

f(x) dx = −
∫ 5

0

f(x) dx+

∫ 7

0

f(x) dx = −3 + 10 = 7.

Παράδειγμα (max-min). Είναι 0 ≤ x2 ≤ x στο [0, 1], άρα

0 ≤
∫ 1

0

x2 dx ≤
∫ 1

0

x dx.
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Βρίσκουμε γεωμετρικά
∫ 1

0 x dx = 1/2, οπότε

0 <

∫ 1

0

x2 dx <
1

2
.

Θεώρημα (Ολοκληρωσιμότητα συνεχών συναρτήσεων). Αν μία συνάρτηση f είναι συνεχής σε διά-
στημα [a, b], ή αν η f έχει πεπερασμένες το πλήθος ασυνέχειες άλματος, τότε το ορισμένο ολοκλή-
ρωμα

∫ b

a f(x) dx υπάρχει και η f είναι ολοκληρώσιμη στο [a, b].

Ερώτηση. Βρείτε το ολοκλήρωμα της συνάρτηση βήματος στο διάστημα [−1, 1].

Ορισμός. Αν η f είναι ολοκληρώσιμη στο [a, b] τότε ορίζουμε την μέση τιμή της ως

av(f) = 1

b− a

∫ b

a

f(x) dx.

3.3 Θεμελιώδες θεώρημα απειροστικού λογισμού

Για μία ολοκληρώσιμη συνάρτηση f μπορούμε να ορίσουμε το ολοκλήρωμα από έναν σταθερό
αριθμό a σε έναν τυχόντα x,

F (x) =

∫ x

a

f(t) dt.

Εδώ έχουμε την μεταβλητή x να εμφανίζεται στο όριο του ολοκληρώματος. Η τιμή του ολοκληρώμα-
τος εξαρτάται από το x, δηλαδή, F = F (x). Η τιμή της F (x) δίνει το εμβαδό κάτω από το γράφημα
στο διάστημα [a, x] (θεωρούμε F > 0 και x > a).
Θα εξάγουμε ένα πολύ σημαντικό αποτέλεσμα αν υπολογίσουμε το F ′(x). Βλέπουμε ότι το (κάνετε
γράφημα)

F (x+ h)− F (x)
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δίνει το εμβαδό κάτω από το γράφημα της f στο διάστημα [x, x+ h]. Δηλαδή

F (x+ h)− F (x) ≈ hf(x).

Διαιρούμε με h και παίρνουμε
F (x+ h)− F (x)

h
≈ f(x).

Παίρνουμε το όριο h → 0 και βρίσκουμε

lim
h→0

F (x+ h)− F (x)

h
= f(x).

Θεώρημα. (Θεμελιώδες θεώρημα απειροστικού λογισμού - 1] Αν η f είναι συνεχής στο [a, b], τότε
η συνάρτηση F (x) =

∫ x

a f(t) dt είναι συνεχής στο [a, b] και διαφορίσιμη στο (a, b) και η παράγωγός
της είναι η f(x),

F ′(x) =
d

dx

∫ x

a

f(t) dt︸ ︷︷ ︸
F (x)

= f(x).

Παράδειγμα. Θα βρούμε την παράγωγο της

y =

∫ x

a

(t3 + 1) dt.

Είναι
dy

dx
= x3 + 1.

Παράδειγμα. Θα βρούμε την παράγωγο της

y =

∫ x2

1

cos t dt.
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Είναι y = y(u) όπου u = x2. Έχουμε
dy

dx
=

dy

du

du

dx
= cosu(2x) = 2x cosx2.

Θεώρημα. (Θεμελιώδες θεώρημα απειροστικού λογισμού - 2] Αν η f είναι συνεχής στο [a, b], και η
F μία αντιπαράγωγος της f στο [a, b], τότε∫ b

a

f(t) dt = F (b)− F (a).

Απόδειξη. Το προηγούμενο θεώρημα μας λέει ότι μία αντιπαράγωγος της f είναι η

G(x) =

∫ x

a

f(t) dt.

Ξέρουμε ότι μια οποιαδήποτε αντιπαράγωγος της f είναι η F (x) = G(x) + C. Παίρνουμε

F (b)− F (a) = [G(b) + C]− [G(a) + C] = G(b)−G(a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt =

∫ b

a

f(t) dt. □

Το θεώρημα μας λέει ότι για να υπολογίσουμε ένα ορισμένο ολοκλήρωμα πρέπει

• Να βρούμε μία αντιπαγάγωγο της f .

• Να υπολογίσουμε την ποσότητα F (b)− F (a).

[Δηλαδή, δεν χρειάζεται να υπολογίσουμε ποτέ αθροίσματα Riemann.]

Παράδειγμα. (α) Θα βρούμε το ορισμένο ολοκλήρωμα∫ π/2

0

cosx dx = [sinx]π/20 = sin(π/2)− sin 0 = 1− 0 = 1.
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(β) Θα βρούμε το ορισμένο ολοκλήρωμα∫ π

0

cosx dx = [sinx]π0 = sin π − sin 0 = 0− 0 = 0.

Στα παραδείγματα, χρησιμοποιήσαμε τον συμβολισμό∫ b

a

f(t) dt = [F (x)]ba = F (b)− F (a).

Από τα παραπάνω θεωρήματα προκύπτει το εξής.

Θεώρημα (Θεώρημα ολικής μεταβολής). Η ολική μεταβολή μιας διαφορίσιμης συνάρτησης F (x) σε
ένα διάστημα [a, b] είναι το ολοκλήρωμα του ρυθμού μεταβολής της

F (b)− F (a) =

∫ b

a

F ′(x) dx.

Παράδειγμα. Αν ένα σώμα κινείται με ταχύτητα v(t) = ds/dt (όπου s(t) η θέση του) τότε∫ t2

t1

v(t) dt = s(t2)− s(t1)

δηλαδή, το ολοκλήρωμα της ταχύτητας είναι η μετατόπιση κατά το χρονικό διάστημα t1 ≤ t ≤ t2.

Παράδειγμα. Έστω c(x) το κόστος παραγωγής x τόνων χάλυβα. To μέσο κόστος παραγωγής επι-
πλέον h τόνων είναι

c(x+ h)− x(x)

h
.

Το οριακό κόστος παραγωγής ορίζεται ως

lim
h→0

c(x+ h)− x(x)

h
= c′(x).
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Βλέπουμε ότι το ορισμένο ολοκλήρωμα∫ x2

x1

c′(x) dx = c(x2)− c(x1)

δίνει το κόστος της παραγωγής από x1 σε x2 μονάδες.

Παράδειγμα. Θα βρούμε το εμβαδό του χωρίου που περικλείεται από τις γραφικές παραστάσεις
των x και x2 στο διάστημα [0, 1] (κάνετε σχήμα). Είναι∫ 1

0

(x− x2) dx =

∫ 1

0

x dx−
∫ 1

0

x2 dx =

[
x2

2
− x3

3

]1
0

=
1

2
− 1

3
=

1

6
.

Το θεμελιώδες θεώρημα του απειροστικού λογισμού μας λέει αρκετά πράγρατα.

• Αν ολοκληρώσουμε την f και έπειτα παραγωγίσουμε το αποτέλεσμα, παίρνουμε ξανά την f ,

d

dx

∫ x

a

f(t) dt = f(x).

• Αν παραγωγίσουμε την F και έπειτα ολοκληρώσουμε το αποτέλεσμα, παίρνουμε ξανά την F
(πιθανόν με μία σταθερά), ∫ x

a

F ′(t) dt = F (x)− F (a).

• Οι έννοιες παραγώγισης και ολοκλήρωσης είναι κατά κάποια έννοια αντίστροφες. Ας γράψουμε
σχηματικά

f(x)
∫

−→
∫ x

a

f(t)dt
d
dx−→ f(x).
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Παράδειγμα. Ας ξεκινήσουμε από την συνάρτηση f(x) = 2x. Γνωρίζουμε ότι η αντιπαράγωγος είναι
F (x) = x2 + c. Το θεώρημα-2 λέει ∫ x

0

2x dx = (x2 + c)− c = x2,

δηλαδή, το ολοκλήρωμα δίνει μία αντιπαράγωγο της f(x). Φυσικά, αν παραγωγίσουμε το αποτέλε-
σμα παίρνουμε πάλι την f(x),

(x2)′ = 2x.

3.4 Μέθοδοι ολοκλήρωσης

3.4.1 Μέθοδος αντικατάστασης

Έχουμε δει ότι το
∫
cos(2x)dx = 1

2 sin(2x) + C μπορέσαμε να το βρούμε αφού γνωρίζουμε ότι∫
cosxdx = sinx + C. Θα δούμε μια γενικότερη μέθοδο για να σχετίζουμε νέα (άγνωστα) ολοκλη-

ρώματα με τα βασικά που ήδη γνωρίζουμε.
Η μέθοδος βασίζεται στον κανόνα αλυσίδας για συνάρτηση F (u(x)),

d

dx
F (u(x)) =

dF

du

du

dx
= F ′(u)u′(x).

Άρα, είναι ∫
F ′(u)u′(x) dx = F (u) + C.

Για να δούμε την χρησιμότητα της παραπάνω σχέσης την γράφουμε ως (F ′ = f)∫
f(u) u′(x)dx︸ ︷︷ ︸

du

= F (u) + C =

∫
f(u)du.
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(Η τελευταία προκύπτει διότι η F είναι αντιπαράγωγος της f .)

Θεώρημα (Κανόνας αντικατάστασης για αόριστα ολοκληρώματα). Έστω u = u(x), τότε ισχύει η
ισότητα των ολοκληρωμάτων ∫

f(u)u′(x) dx =

∫
f(u)du.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα∫
2(2x+ 1)3 dx.

Θέτουμε u = 2x+ 1, έχουμε u′(x) = 2 και είναι∫
(2x+ 1)3︸ ︷︷ ︸

u3

2dx︸︷︷︸
du

=

∫
u3 du =

u4

4
+ C =

(2x+ 1)4

4
+ C.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα∫
2x cos(x2) dx.

Θέτουμε u = x2, έχουμε u′(x) = 2x και είναι∫
cos(x2)︸ ︷︷ ︸

u

2xdx︸ ︷︷ ︸
du

=

∫
cosu du = sinu+ C = sin(x2) + C.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα

I =

∫
dx

(x− a)2
.



3.4. ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ 49

Θέτουμε y = x− a, άρα dy = dx και το ολοκλήρωμα είναι

I =

∫
dy

y2
= −1

y
+ c =

1

a− x
+ c.

Παράδειγμα (Διαίρεση πολυωνύμου). Θα υπολογίσουμε το ολοκλήρωμα∫
x2 + 2x− 1

x+ 4
dx.

Βλέπουμε ότι x2 + 2x− 1 = (x+ 4)(x− 2) + 7, άρα το ολοκλήρωμα είναι∫
(x+ 4)(x− 2) + 7

x+ 4
dx =

∫
(x− 2) dx+

∫
7

x+ 4
dx =

x2

2
− 2x+ 7 ln |x+ 4|+ C.

Παράδειγμα. (*) Έστω η
f(x) =

1√
ax+ b

.

Θέλουμε F τέτοια ώστε dF
dx = f . Μπορούμε να θέσουμε y = ax + b. Βλέπουμε ότι μπορούμε να

γράψουμε το πρόβλημα ως εξής
dF

dx
=

1
√
y
⇒ dF

dy

dy

dx
=

1
√
y
⇒ dF

dy
=

1
√
y

dx

dy
⇒ dF

dy
=

1
√
y

1

a
⇒ F =

2

a

√
y.

Το αποτέλεσμα είναι
F (x) =

2

a

√
ax+ b.

3.4.2 Μερικά κλάσματα

Παράδειγμα. Εστω το ολοκλήρωμα

I =

∫
x dx

(x+ 1)(x+ 2)
.
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Γνωρίζουμε ότι μπορούμε να γράψουμε την ολοκληρωταία ως άθροισμα μερικών κλασμάτων
x

(x+ 1)(x+ 2)
= − 1

x+ 1
+

2

x+ 2
.

Ώστε
I −

∫
dx

x+ 1
+ 2

∫
dx

x+ 2
= − ln |x+ 1|+ 2 ln |x+ 2|+ c.

3.4.3 Τριγωνομετρικά ολοκληρώματα

Παράδειγμα. Για το
I =

∫
sin2 x dx

χρησιμοποιούμε την ταυτότητα sin2 x = 1
2(1− cos(2x)) και έχουμε

I =
1

2

∫
(1− cos(2x)) dx =

x

2
− 1

4
sin(2x) + c.

Παράδειγμα. Για το
I =

∫
cos5 x dx

κάνουμε την αντικατάσταση u = sinx και γράφουμε

I =

∫
cos4 x cosx dx =

∫
(1− u2)2du = . . . = u− 2

3
u3 +

u5

5
+ c = sinx− 2

3
sin3 x+

sin5 x
5

+ c.

Παράδειγμα. Ας δούμε το∫
tanx dx =

∫ sinx
cosx dx = −

∫
du

u
= − ln | sinx|+ c, u = cosx.
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3.4.4 Τριγωνομετρικές αντικαταστάσεις

Κάποια ολοκληρώματα υπολογίζονται με τριγωνομετρικές αντικαταστάσεις. Ας δούμε το

I =

∫
dx√

x2 + a2
, x = a sinh y, a > 0.

Είναι dx = a cosh y dy και

I =

∫
a cosh y dy√
a2 sinh2 y + a2

= . . .

∫
dy = y + c = arcsinh

(x
a

)
+ c.

Δοκιμάστε να υπολογίσετε τα

I =

∫
dx√

x2 − a2
, x = a cosh y

I =

∫
dx√

a2 − x2
, x = a sin y.

3.4.5 Κατά παράγοντες ολοκλήρωση

Η ολοκλήρωση κατά παράγοντες είναι μία τεχνική απλούστευσης ολοκληρωμάτων της μορφής∫
u(x)v′(x) dx.

Για να την εφαρμόσουμε παρατηρούμε ότι

d

dx
[u(x)v(x)] = u′(x)v(x) + u(x)v′(x).
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Παίρνουμε αόριστα ολοκληρώματα και στα δύο μέλη∫
d

dx
[u(x)v(x)] dx =

∫
u′(x)v(x) dx+

∫
u(x)v′(x) dx∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx.

Παράδειγμα. Στο ολοκλήρωμα
I =

∫
x cosx dx

μπορούμε να θέσουμε u(x) = x και v′(x) = cosx ⇒ v(x) = sinx. Ώστε είναι∫
x︸︷︷︸
u

cosx︸ ︷︷ ︸
v′

dx = x︸︷︷︸
u

sinx︸︷︷︸
v

−
∫

1︸︷︷︸
u′

sinx︸︷︷︸
v

dx = x sinx+ cosx+ c.

Παρατήρηση 3.3. Σκοπός της παραγοντικής ολοκλήρωσης είναι να περάσουμε από ένα ολοκλή-
ρωμα που δεν γνωρίζουμε,

∫
uv′ dx σε ένα άλλο που γνωρίζουμε,

∫
u′v dx.

Παράδειγμα. Στο ολοκλήρωμα
I =

∫
x2ex dx

θέτουμε u(x) = x2 και v′(x) = ex ⇒ v(x) = ex. Ώστε είναι∫
x2︸︷︷︸
u

ex︸︷︷︸
v′

dx = x2︸︷︷︸
u

ex︸︷︷︸
v

−
∫

2x︸︷︷︸
u′

ex︸︷︷︸
v

dx.

Δεν ξέρουμε το νέο ολοκλήρωμα που προέκυψε, αλλά μπορούμε να κάνουμε πάλι κατά παράγοντες
ολοκλήρωση. Θέτουμε u(x) = 2x και v′(x) = ex ⇒ v(x) = ex∫

2x︸︷︷︸
u

ex︸︷︷︸
v′

dx = 2x︸︷︷︸
u

ex︸︷︷︸
v

−
∫

2︸︷︷︸
u′

ex︸︷︷︸
v

dx = 2xex − 2ex + C.
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Το αποτέλεσμα είναι
I = x2ex − 2xex + 2ex + C.

3.4.6 Μη γνήσια ορισμένα ολοκληρώματα

([3], Κεφ. 3.3.2)
Θα θέλαμε να υπολογίσουμε το ολοκλήρωμα συναρτήσεων όταν τα όρια ολοκλήρωσης βρίσκονται
στο άπειρο. Θα μπορούσε να τεθεί το ερώτημα αν ένα τέτοιο ολοκλήρωμα μπορεί να βρεθεί και αν
ίσως το αποτέλεσμα θα περιμέναμε να είναι άπειρο. Για παράδειγμα,

I =

∫ ∞

0

e−kxdx.

Εδώ γράφουμε το εξής

I =

∫ ∞

0

e−kxdx = lim
a→∞

∫ a

0

e−kxdx =
1

k
lim
a→∞

(1− e−ka).

Αν k > 0, το όριο υπάρχει και το ολοκλήρωμα συγκλίνει στην τιμή

I =

∫ ∞

0

e−kxdx =
1

k
.

Όμως, για το
I =

∫ ∞

0

ekxdx, k > 0

βρίσκουμε με τον ίδιο τρόπο ότι το ολοκλήρωμα αποκλίνει στο άπειρο (δηλαδή, δεν υπάρχει).

Ερώτηση. Τι συμαίνουν γεωμετρικά τα αποτελέσματα που βγάλαμε;
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Θα δούμε τώρα ολοκληρώματα στα οποία η ολοκληρωταία συνάρτηση μπορεί να απειρίζεται σε
σημείο. Για παράδειγμα

I =

∫ 1

0

1

x
dx = lim

a→0+

∫ a

0

1

x
dx = lim

a→0+
lnx|1a = − lim

a→0+
ln a = ∞.

Ένα άλλο σχετικό παράδειγμα, δίνει όμως διαφορετικό αποτέλεσμα

I =

∫ 1

0

1√
x
dx = lim

a→0+

∫ a

0

1√
x
dx = 2 lim

a→0+
(1−

√
a) = 2.

Λέμε ότι αυτό το ολοκλήρωμα συγκλίνει (στο 2).

3.4.7 Αριθμητική ολοκλήρωση: Μέθοδος Monte Carlo

3.5 Εφαρμογές

3.5.1 Μάζα κατανομής πυκνότητας

Μπορούμε να βρούμε την μάζα σώματος ως

μάζα = πυκνότητα · όγκος.

Αν έχουμε πολλά σωματα με διαφορερικές πυκνότητες ρk και όγκους Vk τότε η συνολική μάζα είναι

m =
∑
k

ρkVk.



3.5. ΕΦΑΡΜΟΓΕΣ 55

Παράδειγμα (Μάζα γραμμικής κατανομής πυκνότητας). Θεωρούμε μικρά ραβδωτά κομματάκια
καθένα με μήκος ∆x και αντίστοιχες γραμμικές πυκνότητες ρk. Η συνολική μάζα είναι

m =
∑
k

ρk∆x.

Τα τοποθετούμε το ένα δίπλα στο άλλο και έχουμε μία ράβδο από x = 0 έως x = L. Γράφουμε την
πυκνότητα της ράβδου ως ρ(x) (δεν είναι ίδια παντού). Αν θεωρήσουμε απειροστά μικρά κομμάτια
ράβδου μήκους dx, η μάζα του καθενός είναι dm = ρ(x)dx. Η συνολική μάζα της ράβδου είναι

m =

∫ L

0

ρ(x)dx.

Έστω κατανομή μάζας ρ(x) = 1 + x2 για ράβδο στο διάστημα 0 < x < 2. Η μάζα της είναι

m =

∫ 2

0

(1 + x2)dx =

[
x+

x3

3

]2
0

=
14

3
.

3.5.2 Έργο δύναμης

Το έργο που παράγεται από δύναμη F η οποία δρα σε διάστημα ∆x είναι W = F∆x. Αν η δύναμη
είναι διαφορετική σε διαφορετικές θέσεις xi τότε το έργο είναι W =

∑
i f(xi)∆x. Για δύναμη F (x),

το έργο που παράγει όταν μετατοπίζει αντικείμενο από θέση x = a σε x = b (στην κατεύθυνση της
δύναμης), το έργο δίνεται από το ολοκλήρωμα

W =

∫ b

a

F (x)dx.
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Παράδειγμα (Συμπίεση ελατηρίου). Η δύναμη ελατηρίου είναι F = kx και το έργο που παράγει
(έστω ότι η μάζα βρίσκεται αρχικά στην θέση ισοροοπίας)

W =

∫ a

0

kxdx = k
x2

2

∣∣∣a
0
=

ka2

2
.

Παράδειγμα (Προβλήματα ανύψωσης). [2], Κεφ. 6.7, παράδειγμα 2

3.5.3 Μήκος καμπυλών

Θεωρούμε μία καμπύλη με εξίσωση y = f(x), a ≤ x ≤ b (κάνετε σχήμα). Ας χωρίσουμε τον άξονα
x σε κομμάτια μήκους ∆x. Το μήκος ενός κομματιού της καμπύλης που αντιστοιχεί στο ∆x είναι
(από το Πυθαγόρειο θεώρημα)√

(∆x)2 + (∆yk)2, ∆yk = f(xk +∆x)− f(xk).

Το συνολικό μήκος L της καμπύλης είναι

L =
n∑

k=1

√
(∆x)2 + (∆yk)2 =

n∑
k=1

√√√√(∆x)2

(
1 +

(
∆yk
∆x

)2
)

=
n∑

k=1

√
1 +

(
∆yk
∆x

)2

∆x.

Το εκριβές της καμπύλης βρίσκεται αν πάρουμε ∆x → dx (απειροστά διαστήματα) και ολοκληρώ-
σουμε

L =

∫ b

a

√
1 + f ′(x)2 dx.

Παράδειγμα. Ας βρούμε το μήκος της καμπύλης f(x) = x3/2 στο διάστημα 0 ≤ x ≤ 4. Είναι
f ′(x) = 3

2x
1/2 και

L =

∫ 4

0

√
1 +

9

4
x dx =

4

9

∫ 10

1

√
u du =

8

27
u3/2

∣∣10
1

= . . . .
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3.5.4 Όγκος στερεού από περιστροφή

Εάν περιστρέψουμε καμπύλη y = f(x) γύρω από τον άξονα των x, δημιουργείται ένα σχήμα που
ονομάζεται στερεό από περιστροφή. Ο όγκος του V υπολογίζεται χωρίζοντάς το σε λεπτούς δίσκους
πάχους ∆x κάθετους στον άξονα των x. Για το υποδιάστημα [xk−1, xk], ο αντίστοιχος δίσκος έχει
όγκο

π(f(ξk))
2∆x, ξk ∈ [xk−1, xk].

Ο συνολικός όγκος είναι

V = lim
n→∞

n∑
k=1

π(f(ξk))
2∆x = π

∫ b

a

(f(x))2dx.

Παράδειγμα. Μία σφαίρα μπορεί να θεωρηθεί ως στερεό από περιστροφή της καμπύλης y =√
R2 − x2, x ∈ [−R,R]. Ο ογκος είναι

V = π

∫ R

−R

(R2 − x2) dx = . . . =
4

3
πR3.

Ερώτηση. Υπολογίστε τον όγκο κυλίνδρου ακτίνας R και ύψους h.

3.5.5 Εμβαδό επιφάνειας

Σκεφτείτε πώς μπορείτε να χρησιμοποιήσετε τις ιδέες των προηγουμένων εφαρμογών ολοκληρωμά-
των ώστε να υπολογίσετε το εμβαδό επιφανειών από περιστροφή (δείτε [2], κεφ. 6.6 ή αντίστοιχο
στο [1]).
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Κεφάλαιο 4

Άπειρες σειρές

4.1 Εισαγωγή

4.1.1 Ακολουθίες

Ερώτηση. Υπολογίστε με το κομπιουτεράκι το άρθοισμα της παρακάτω σειρά αριθμών

1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

Ποιος είναι ο αριθμός που βρίσκετε; Αν φανταστείτε ότι η σειρά αυτή έχει άπειρους όρους, θα ήταν
δυνατόν να τους προσθέσετε και να βρείτε το αποτέλεσμα;

Ορισμός (Ακολουθία). Μία ακολουθία είναι μία λίστα αριθμών σε δεδομένη διάταξη,

a1, a2, a3, . . . , an, . . . .

Για παράδειγμα,
2, 4, 6, . . . , 2n, . . .

59
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Εδώ εννοούμε ότι το n παίρνει τις τιμές n = 1, 2, 3, . . ..
Επίσης, (οι όροι στην σειρά στην αρχή του κεφαλαίου - αγνοόντας το πρόσημο)

1,
1

3
,
1

5
, . . . ,

1

2n− 1
, . . . .

Ορισμός (Σύγκλιση ακολουθίας). Η ακολουθία {an} συγκλίνει στον αριθμό L αν σε κάθε θετικό
αριθμό ϵ αντιστοιχεί ένας ακέραιος N τέτοιος ώστε

|an − L| < ϵ, για κάθε n > N.

Αν δεν υπάρχει τέτοιος αριθμός L, τότε λέμε ότι η {an} αποκλίνει.
Αν η {an} συγκλίνει στον L, γράφουμε limn→∞ an = L, ή an → L.

Παράδειγμα. (α) limn→∞
1
n = 0.

(β) ([1], κεφ. 10.1, παράδειγμα 2). Η ακολουθία {1,−1, 1,−1, 1, . . . , (−1)n+1, . . .} αποκλίνει.
(γ) Η ακολουθία {

√
n} αποκλίνει στο άπειρο. Γράφουμε

lim
n→∞

√
n = ∞.

Θεώρημα. Έστω οι ακολουθίες {an}, {bn} με limn→∞ an = A, , limn→∞ bn = B και οι A,B πραγματι-
κοί αριθμοί.

Όριο αθροίσματος: lim
n→∞

(an + bn) = A+B

Όριο σταθερού πολλαπλασίου: lim
n→∞

k an = kA

Όριο γινομένου: lim
n→∞

(an · bn) = A · B.
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Παράδειγμα.

(α) lim
n→∞

(
n− 1

n

)
= lim

n→∞

(
1− 1

n

)
= lim

n→∞
1− lim

n→∞

1

n
= 1− 0 = 1.

(β) lim
n→∞

(
4− 7n2

n2 + 3

)
= lim

n→∞

(
4/n2 − 7

1 + 3/n2

)
= lim

n→∞

0− 7

1 + 0
= −7.

Θεώρημα (Θεώρημα συνεχούς συνάρτησης για ακολουθίες). Έστω η ακολουθία {an}. Αν an → L

και αν η f είναι συνάρτηση συνεχής στο L και ορισμένη σε όλα τα an, τότε f(an) → f(L).

Παράδειγμα. Έστω η ακολουθία με an =
√

2n+1
n . Γνωρίζουμε ότι 2n+1

n = 2 + 1
n → 2. Θέτουμε

f(x) =
√
x και L = 1 και έχουμε √

2n+ 1

n
→

√
2.

4.1.2 Σειρές

Ορισμός (Σειρά). Μία σειρά είναι το άθροισμα μίας άπειρης ακολουθίας αριθμών,
a1 + a2 + a3 + . . .+ an + . . . .

Συχνά γράφουμε το άθροισμα των n πρώτων όρων της σειράς ως

sn = a1 + a2 + a3 + . . .+ an =
n∑

i=1

ai.

Παράδειγμα (Γεωμετρική σειρά). Ας δούμε την σειρά

1 + r + r2 + r3 + . . .+ rn−1 =
n∑

k=1

rk−1, r ∈ R.
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Μπορούμε να υπολογίσουμε το sn ως εξής

sn = 1 + r + r2 + r3 + . . .+ rn−1

rsn = r + r2 + r3 + r4 + . . .+ rn,

ώστε
sn − rsn = 1− rn ⇒ sn =

1− rn

1− r
, r ̸= 1. □

Για την άπειρη γεωμετρική σειρά, δηλαδή, όταν n → ∞, βλέπουμε ότι

• Αν |r| > 1, τότε limn→∞ rn → ∞ και η σειρά απειρίζεται, limn→∞ sn → ∞.

• Για |r| < 1, είναι limn→∞ rn = 0, άρα
∞∑
n=0

rn =
1

1− r
, |r| < 1.

Για μία σειρά a1, a2, . . . , an, . . ., αν έχουμε τον γενικό όρο an τότε μπορούμε να αναπαράγουμε όλους
τους όρους.

Παράδειγμα. Έστω an = {r2n}, όπου r ∈ R, τότε η σειρά είναι η

1 + r2 + r4 + r6 + . . .+ r2n + . . . . □

Θα πρέπει να είναι σαφές ότι μία σειρά μπορεί να συγκλίνει σε έναν αριθμό ή όχι, ή να αποκλίνει
στο άπειρο. Υπάρχουν κριτήρια τα οποία, σε πολλές περιπτώσεις, μας λένε αν μία σειρά συγκλίνει
ή αποκλίνει.
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Θεώρημα (Κριτήριο του λόγου). Έστω
∑

an μία σειρά και

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ.

• Αν ρ < 1, η σειρά συγκλίνει.

• Αν ρ > 1, η σειρά αποκλίνει.

• Αν ρ = 1, δεν μπορούμε να αποφανθούμε.

Θεώρημα. Έστω οι
∑

an = A,
∑

bn = B είναι συγκλίνουσε σειρές, τότε

Άθροισμα:
∑

(an + bn) = A+B

Σταθερό πολλαπλάσιο:
∑

k an = kA.

4.2 Δυναμοσειρές

Ορισμός. Δυναμοσειρά με κέντρο το x = 0 είναι μία σειρά της μορφής
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · ,

όπου οι c0, c1, c2, . . . είναι σταθερές.
Δυναμοσειρά με κέντρο το x = a είναι μία σειρά της μορφής

∞∑
k=0

ckx
k = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · .
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Παράδειγμα. Η γεωμετρική δυναμοσειρά είναι
∞∑
k=0

xk = 1 + x+ x2 + · · ·+ xn + · · · .

Συγκλίνει για |x| < 1 και είναι
1

1− x
= 1 + x+ x2 + · · ·+ xn + · · · , −1 < x < 1.

4.3 Σειρές Taylor και MacLauren

Ας θεωρήσουμε μία συνάρτηση της οποίας η έκφραση είναι

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + · · · ,

δηλαδή, δίνεται από μία δυναμοσειρά. Μπορούμε εύκολα να βρούμε τις παραγώγους της,

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
f ′′(x) = 2a2 + 3 · 2a3x+ · · ·+ n · (n− 1)anx

n−2 + · · ·
f ′′′(x) = 3 · 2a3 + 4 · 3 · 2a4x+ · · ·+ n · (n− 1) · (n− 2)anx

n−3 + · · · .

Μπορούμε να δούμε ότι η -οστή παράγωγος είναι

f (n)(x) = n! an + κάτι · x+ κάτι · x2 + · · · .

Παίρνουμε το x = 0 και βρίσκουμε

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, f ′′′(0) = 3 · 2a3, · · · , f (n)(0) = n! an.
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Έτσι μπορούμε να γράψουμε όλους τους συντελεστές της δυναμοσειράς ως

an =
f (n)(0)

n!
.

Τώρα μπορούμε να γράψουμε την συνάρτηση f(x) ως

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .

Μπορούμε να επαναλάβουμε τα βήματα που είδαμε παραπάνω αν θέσουμε όπου x το x− a, όπου
a είναι μία σταθερά. Ξεκινάμε από την

f(x) =
∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

και βρίσκουμε

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

Ορισμός (Σειρά Taylor και MacLauren). Έστω f συνάρτηση με παραγώγους όλων των τάξεων σε
κάθε σημείο ενός διαστήματος και a κάποιο εσωτερικό σημείο του διαστήματος αυτού. Τότε η σειρά
Taylor που παράγεται από την f στο x = a είναι

∞∑
k=0

f (k)(a)

k!
(x− a)k = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

Η σειρά MacLauren της f είναι η σειρά Taylor που παράγεται από την f στο x = 0,
∞∑
k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .
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Παράδειγμα. Ας βρούμε τη σειρά Taylor η οποία παράγεται από την

f(x) = ex.

Εφόσοον f (n)(x) = ex, είναι f (n)(0) = 1 για κάθε n ≥ 0. Ώστε η σειρά Taylor είναι

1 + x+
x

2
+

x2

3!
+ · · ·+ xn

n!
+ · · · .

Ορισμός (Πολυώνυμα Taylor). Έστω f συνάρτηση με παραγώγους τάξεως k σε κάποιο διάστημα
που περιέχει το a ως εσωτερικό σημείο. Τότε, για κάθε μη-αρνητικό ακέραιο n < k, το πολυώνυμο
Taylor τάξεως n που παράγεται από την f στο x = a είναι το

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Παράδειγμα. Το πολυώνυμο Taylor τάξης n το οποίο παράγεται από την f(x) = ex είναι

1 + x+
x

2
+

x2

3!
+ · · ·+ xn

n!
.

Ερώτηση. (α) Ποια είναι η γραμμική προσέγγιση της ex στο σημείο x = 0; (β) Σχεδιάστε την γραφική
παράσταση της ex και την γραμμική της προσέγγιση. (γ) Σχεδιάστε επίσης το πολυώνυμο P2(x) στο
x = 0. Τι παρατηρείτε;

Παράδειγμα. Ας βρούμε τη σειρά Taylor στο x = 0 η οποία παράγεται από την

f(x) = cosx.

Είναι
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f(x) = cosx f(0) = 1
f ′(x) = − sinx f ′(0) = 0
f ′′(x) = − cosx f ′′(0) = −1
f ′′′(x) = sinx f ′′′(0) = 0

f (4)(x) = cosx f (4)(0) = 1
… …
f (2n)(x) = (−1)n cosx f (2n)(0) = (−1)n

f (2n+1)(x) = (−1)n+1 sinx f (2n+1)(0) = 0

Η σειρά Taylor περιέχει μόνο άρτιους όρους και είναι

1− x2

2
+

x4

4!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · =

∞∑
m=0

(−1)mx2m

(2m)!
.

Ερώτηση. Τι βαθμού μπορεί να είναι ένα πολυώνυμο Taylor τάξης n;

Παράδειγμα. Ας βρούμε τη σειρά Taylor στο x = 0 η οποία παράγεται από την

f(x) = coshx.

Γράφουμε

coshx =
ex + e−x

2

και θα χρησιμοποιήσουμε το ανάπτυγμα Taylor της ex,

coshx =
1

2

( ∞∑
n=0

xn

n!
+

∞∑
n=0

(−1)nxn

n!

)
=

1

2

∞∑
n=0

1 + (−1)n

n!
xn =

∞∑
m=0

1

(2m)!
x2m = 1 +

x2

2
+

x4

24
+ . . . .
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4.3.1 Σύγκλιση της σειράς Taylor

Θεώρημα (Τύπος του Taylor). Αν η f έχει παραγώγους όλων των τάξεων σε ένα ανοιχτό διάστημα
I που περιέχει το a, τότε για κάθε ακέραιο n > 0 και για κάθε x ∈ I ,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n +Rn(x)

όπου
Rn(x) =

f (n+1)(c)

(n+ 1)!
(x− a)n+1, για κάποιο c ∈ [a, x].

Το παραπάνω μας λέει ότι ένα πολυώνυμο Taylor προσεγγίζει μία συνάρτηση f(x) και έχει ένα
συγκεκριμένο υπόλοιπο Rn. Η τιμή του υπολοίπου δεν είναι γνωστή στην γενική περίπτωση, όμως
σε πολλές περιπτώσεις, μπορούμε να υπολογίσουμε το υπόλοιπο και να γνωρίζουμε πόσο καλή
είναι η προσέγγισή μας.

Παρατήρηση 4.1. Αν Rn(x) → 0 καθώς n → ∞ για κάθε x ∈ I, λέμε ότι η σειρά Taylor συγκλίνει
στην f .

Διωνυμική σειρά. Έχουμε την σειρά Taylor

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + . . . .

Η σειρά αυτή ονομάζεται διωνυμική και συγκλίνει για |x| < 1. Για να την εξάγουμε, έχουμε

f ′(x) = m(1 + x)m−1, f ′′(x) = m(m− 1)xm−2, . . . .

Παίρνουμε τις τιμές της f και των παραγώγων στο x = 0,

f(0) = 1, f ′(0) = m, f ′′(0) = m(m− 1), , . . .



4.3. ΣΕΙΡΕΣ TAYLOR ΚΑΙ MACLAUREN 69

• Αν m είναι ακέραιος ≥ 0 τότε η σειρά τερματίζεται έπειτα από m+ 1 όρους.

• Αν το m δεν είναι θετικός ακέραιος τότε η σειρά είναι άπειρη και συγκλίνει για |x| < 1.

Παράδειγμα. Βρείτε την σειρά γύρω από το x = 0 για την συνάρτηση f(x) =
√
1 + x. Είναι

(1 + x)1/2 = 1 +
x

2
− x2

8
+

x3

16
− . . . .

Ορισμός (Διωνυμικοί συντελεστές). Για πραγματικούς αριθμούς p και ακεραίους k ≥ 1, ορίζουμε
τα σύμβολα (

m
k

)
=

m(m− 1)(m− 2) · · · (m− k + 1)

k!
,

(
m
0

)
= 1.

Αυτοί είναι οι συντελεστές στην διωνυμική σειρά.

Ερώτηση. Αν μας δοθεί η συνάρτηση f(x) = (a + x)m, πώς θα μπορούσαμε να χρησιμοποιήσουμε
την σειρά Taylor της (1 + x)m και να βρούμε την σειρά Taylor της f(x);

4.3.2 Εφαρμογές

Γνωρίζουμε από μία άσκηση ότι

arctanx =
∞∑
0

(−1)n x2n+1

2n+ 1
.

Μπορούμε να βρούμε μία έκφραση για το π ως εξής

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− . . . .
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4.4 Σειρές Fourier

4.4.1 Περιοδικές συναρτήσεις

Θα δούμε συναρτήσεις f(x) οι οποίες είναι περιοδικές, δηλαδή ισχύει

f(x+ P ) = f(x) όπου P > 0 είναι η περίοδος.

Φυσικά παραδείγματα.

• Η θέση της Σελήνης ως προς την Γη είναι περιοδική συνάρτηση του χρόνου.
• Τα ηχητικά κύματα παράγονται από ταλαντώσεις (περιοδικές στον χρόνο κινήσεις) των φωνη-
τικών χορδών.

Παραδείγματα συναρτήσεων.

• Η sin x έχει περίοδο P = 2π. Μπορεί επίσης να θεωρηθεί ότι έχει περίοδο 4π και επίσης
6π, 8π, . . ., επειδή τα sin(x + 2π), sin(x + 4π), sin(x + 6π), . . . είναι όλα ίσα με sin x. Η ελάχιστη
περίοδος ή απλώς “περίοδος” είναι P = 2π.

• Η sin(nx), όπου n είναι ακέραιος, έχει περίοδο P = 2π/n.
• Μπορούμε να κατασκευάσουμε συνάρτηση ημιτόνου η οποία έχει περίοδο P . Είναι η sin

(
2πx
P

)
.

• Παρόμοια ισχύουν και για την cosx.

4.4.2 Ορισμός σειράς Fourier

Έστω f(x) ορισμένη στο διάστημα (−L,L) και έξω από το διάστημα ορίζεται με την σχέση f(x +
2L) = f(x), δηλαδή είναι περιοδική με περίοδο 2L. Θα ξεκινήσουμε θεωρώντας L = π, δηλαδή η
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περίοδος είναι 2π. Η σειρά Fourier, ή το ανάπτυγμα Fourier της f(x) ορίζεται ως

a0
2
+

∞∑
n=1

(an cos(nx) + bn sin(nx))

όπου οι συντελεστές Fourier είναι

an =
1

π

∫ π

−π

f(x) cos(nx) dx

bn =
1

π

∫ π

−π

f(x) sin(nx) dx.

Δείτε ότι
a0
2

=
1

2π

∫ π

−π

f(x) dx : μέση τιμή της συνάρτησης.

Οι συναρτήσεις sin(nx), για κάθε ακέραιο n, έχουν όλες περίοδο 2L (το ίδιο και οι cos(nx)). Άρα η
σειρά Fourier παριστάνει μία περιοδική συνάρτηση με περίοδο 2L.

Παρατήρηση 4.2. Σε πολλές περιπτώσεις αποδεικνύεται ότι η σειρά Fourier συγκλίνει στην πε-
ριοδική συνάρτηση f(x):

f(x) =
a0
2
+

∞∑
n=1

(an cos(nx) + bn sin(nx)) .

• Αν η f(x) είναι άρτια συνάρτηση, τότε βρίσκουμε bn = 0, άρα

f(x) =
a0
2
+

∞∑
n=1

an cos(nx).
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• Αν η f(x) είναι περιττή συνάρτηση, τότε βρίσκουμε an = 0, άρα

f(x) =
a0
2
+

∞∑
n=1

bn sin(nx).

Παράδειγμα. Ορίζουμε την f(x) = x στο διάστημα [−π, π] και την επεκτείνουμε περιοδικά στο R.
Είναι περιττή συνάρτηση, άρα an = 0. Είναι

bn =
1

π

∫ π

−π

x sin(nx) dx

Κάνουμε κατά παράγοντες ολοκλήρωση

bn =

[
− 1

nπ
x cos(nx)

]π
−π

+
1

nπ

∫ π

−π

cos(nx) dx = −2

n
cos(nπ) =

{
2
n n περιττός
− 2

n n άρτιος
.

Άρα
x = 2 sinx− sin(2x)

2

3
sin(3x)− 1

2
sin(4x) + 2

5
sin(5x)− . . . , −π ≤ x ≤ π. □

Για συνάρτηση με περίοδο 2L, η σειρά Fourier είναι

f(x) =
a0
2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
όπου οι συντελεστές Fourier είναι

an =
1

L

∫ L

−L

f(x) cos nπx
L

dx, bn =
1

L

∫ L

−L

f(x) sin nπx

L
dx.
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Παράδειγμα. ([5], κεφ. 2, άσκηση 2.11) Ας ορίσουμε την συνάρτηση f(x) = sinx, 0 < x < π την
οποία θεωροθμε περιοδική με περίοδο P = π (κάνετε γραφική παράσταση). Αυτή είναι μία άρτια
συνάρτηση, άρα μπορεί να αναπτυχθεί σε σειρά συνημιτόνων. Βρίσκουμε

an =
2

L

∫ L

0

f(x) cos nπx
L

dx =
2

π

∫ π

0

sinx cos(nx) dx = . . . =
−2(1 + cos(nπ)

π(n2 − 1)
, n ̸= 1.

Είναι

sinx =
2

π
− 2

π

∞∑
n=2

· · · = 2

π
− 4

π

(
cos 2x
22 − 1

+ · · ·
)
.



74 ΚΕΦΑΛΑΙΟ 4. ΑΠΕΙΡΕΣ ΣΕΙΡΕΣ



Κεφάλαιο 5

Συναρτήσεις πολλών μεταβλητών

5.1 Συναρτήσεις δύο μεταβλητών

Ας θυμηθούμε ότι η εξίσωση για το ιδανικό αέριο είναι pV = nRT δηλαδή ο όγκος ιδανικού αερίου
δίνεται από

V =
nRT

p

και εξαρτάται και από την πίεση p και από την θερμοκρασία (η R είναι σταθερά και ας θεωρήσουμε
δεδομένα mole n του αερίου). Γράφουμε τον όγκο ως συνάρτηση δύο μεταβλητών

V (p, T ) =
nRT

p
.

Γράφουμε μία συνάρτηση δύο μεταβλητών ως (κατ’ αναλογία με τις συνηθισμένες συναρτήσεις
y = f(x))

z = f(x, y).

75
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Ορισμός. Μία συνάρτηση z = f(x, y) αντιστοιχεί σε κάθε σημείο (x, y) του R2 (ή ενός D υποσυνόλου
του R2) έναν μοναδικό πραγματικό αριθμό z του R.

• Πεδίο ορισμού: Το σύνολο D στο οποίο ορίζεται η f .

• Σύνολο τιμών: Το σύνολο των αριθμών z που παίρνει η f (υποσύνολο του R).
Παράδειγμα. Βρείτε το πεδίο ορισμού της f(x, y) =

√
4− x2 − y2.

Θα πρέπει 4 − x2 − y2 ≥ 0 ⇒ x2 + y2 ≤ 4. Άρα, το πεδίο ορισμού της f(x, y) είναι ένας κυκλικός
δίσκος με κέντρο την αρχή των αξόνων και ακτίνα 2.

Παράδειγμα. Βρείτε το σύνολο τιμών της f(x, y) = x2 + y2 και της g(x, y) = 1 + x2 + y2.
Θέτουμε z = f(x, y) και είναι z ≥ 0. Αν z = g(x, y), είναι z ≥ 1.

5.2 Γραφικές παραστάσεις

Για να κάνουμε την γραφική παράσταση της z = f(x, y) πρέπει να σχεδιάσουμε το z για κάθε (x, y)
στο πεδίο ορισμού της συνάρτησης (συνήθως θα κάθε σημείο του επιπέδου xy).

Παρατήρηση 5.1. Η γραφική παράσταση της z = f(x, y) αποτελείται από το σύνολο των σημείων
(x, y, z). Αυτά τα σημεία βρίσκονται βέβαια στον τρισδιάστατο χώρο, R3.

Παράδειγμα. Θα σχεδιάσουμε την γραφική παράσταση της f(x, y) = x2 + y2.

• Για (x, y) = (0, 0) είναι z = 0 και παίρνουμε το σημείο (0, 0, 0).

• Για κάθε σημείο (x, y) στον κύκλο x2+x2 = 1 παίρνουμε z = 1. Τα σημεία (x, y, 1) στην γραφική
παράσταση σχηματίζουν έναν κύκλο, ο οποίος όμως βρίσκεται σε ένα επίπεδο υπερυψωμένο
πάνω από το επίπεδο xy.
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• Για κάθε σημείο (x, y) στον κύκλο x2 + x2 = c (με c > 0) παίρνουμε z = c. Τα σημεία (x, y, c)
σχηματίζουν έναν κύκλο σε ύψος c πάνω από το επίπεδο xy.

Η γραφική παράσταση z = f(x, y) είναι ένα παραβολοειδές εκ περιστροφής.

• Η τομή του με κάθε επίπεδο παράλληλο του xy (πάνω από το xy) δίνει έναν κύκλο.

• Αν πάρουμε y = 0, τότε z = f(x, 0) ⇒ z = x2 είναι μία παραβολή στο επίπεδο xz. Ομοίως
z = f(0, y) ⇒ z = y2 είναι μία παραβολή στο επίπεδο yz.

Ερώτηση. Περιγράψτε την γραφική παράσταση της f(x, y) = 1 + x2 + y2.

Παράδειγμα. Θα σχεδιάσουμε την γραφική παράσταση της f(x, y) =
√

1 + x2 + y2.

Ορισμός. Η καμπύλη πάνω στην γραφική παράσταση της z = f(x, y) για την οποία το z παίρνει
σταθερή τιμή z = z0 λέγεται ισοσταθμική καμπύλη. Όταν η ισοσταθμική καμπύλη προβάλλεται
πάνω στο επίπεδο xy τότε ονομάζεται ισοϋψής καμπύλη.

Ερώτηση. Ποιές είναι οι ισοϋψείς καμπύλες της f(x, y) = e−x2−y2.

Παράδειγμα. ([2], κεφ. 13.2 παράδειγμα 6) Το ηλεκτρικό δυναμικό στα σημεία του επιπέδου xy

λόγω δύο φορτίων q1, q2 τα οποία βρίσκονται στις θέσεις (0, 0) και (1, 0) δίνεται από την συνάρτηση
δύο μεταβλητών

ϕ(x, y) =
q1√

x2 + y2
+

q2√
(x− 1)2 + y2

.

Σχεδιάστε (με πρόγραμμα γραφικών) τις ισοϋψείς καμπύλες αυτής της συνάρτησης δυναμικού.
(Επιλέξτε τιμές για τα q1, q2.)

Άσκηση 5.2.1. (α) Βρείτε τις ισοϋψείς καμπύλες της f(x, y) = x2 + 2y2.
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(β) Ποια είναι η συνάρτηση που περιγράφει την γραφική παράσταση της z = f(x, y) στο επίπεδο
xz;

5.3 Μερικές παράγωγοι

Αν δώσουμε μία σταθερή τιμή στην μία μεταβλητή, π.χ., y = 0, τότε έχουμε μία συνάρτηση μίας
μεταβλητής. Για παράδειγμα, αν f(x, y) = x2 + 2y2,

g(x) = f(x, y = 0) ⇒ g(x) = x2.

Μπορούμε τότε να βρούμε την παράγωγο g′(x) = 2x. Το ίδιο μπορούμε να κάνουμε αν θέσουμε
y = b (οποιαδήποτε σταθερά), οπότε g(x, y = b) = x2+2b2 ⇒ g′(x) = 2x. Τις παραγώγους της f(x, y)
που προκύπτουν όταν κρατάμε σταθερή την μία μεταβλητή, θα τις ονομάζουμε μερικές παραγώγους
της f .

Ορισμός. Η μερική παράγωγος της f ως προς x στο σημείο (a, b) είναι
∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
.

Η μερική παράγωγος της f ως προς y στο σημείο (a, b) είναι
∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

• Αν θεωρήσουμε την συνάρτηση g(x) = f(x, b) τότε η ∂f/∂x είναι η συνηθισμένη παράγωγος της
g και δίνει, π.χ., την κλίση της γραφικής παράστασης όταν κινούμαστε στην κατεύθυνση x.

• Αν θεωρήσουμε την συνάρτηση g(y) = f(a, y) τότε η ∂f/∂y είναι η συνηθισμένη παράγωγος της
g και δίνει, π.χ., την κλίση της γραφικής παράστασης όταν κινούμαστε στην κατεύθυνση y.
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Παράδειγμα. Είναι
f(x, y) = x2y ⇒ ∂f

∂x
= 2xy,

∂f

∂y
= x2.

Άσκηση 5.3.1. Βρείτε τις μερικές παραγώγους των

(α) f(x, y) = x2 − y2, (β) f(x, y) = x2 ey.
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