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Κεφάλαιο 4

Άπειρες σειρές

4.1 Εισαγωγή

4.1.1 Ακολουθίες

Ερώτηση. Υπολογίστε με το κομπιουτεράκι το άρθοισμα της παρακάτω σειρά αριθμών

1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

Ποιος είναι ο αριθμός που βρίσκετε; Αν φανταστείτε ότι η σειρά αυτή έχει άπειρους όρους, θα ήταν
δυνατόν να τους προσθέσετε και να βρείτε το αποτέλεσμα;

Ορισμός (Ακολουθία). Μία ακολουθία είναι μία λίστα αριθμών σε δεδομένη διάταξη,

a1, a2, a3, . . . , an, . . . .

Για παράδειγμα,
2, 4, 6, . . . , 2n, . . .

1
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Εδώ εννοούμε ότι το n παίρνει τις τιμές n = 1, 2, 3, . . ..
Επίσης, (οι όροι στην σειρά στην αρχή του κεφαλαίου - αγνοόντας το πρόσημο)

1,
1

3
,
1

5
, . . . ,

1

2n− 1
, . . . .

Ορισμός (Σύγκλιση ακολουθίας). Η ακολουθία {an} συγκλίνει στον αριθμό L αν σε κάθε θετικό
αριθμό ϵ αντιστοιχεί ένας ακέραιος N τέτοιος ώστε

|an − L| < ϵ, για κάθε n > N.

Αν δεν υπάρχει τέτοιος αριθμός L, τότε λέμε ότι η {an} αποκλίνει.
Αν η {an} συγκλίνει στον L, γράφουμε limn→∞ an = L, ή an → L.

Παράδειγμα. (α) limn→∞
1
n = 0.

(β) ([1], κεφ. 10.1, παράδειγμα 2). Η ακολουθία {1,−1, 1,−1, 1, . . . , (−1)n+1, . . .} αποκλίνει.
(γ) Η ακολουθία {

√
n} αποκλίνει στο άπειρο. Γράφουμε

lim
n→∞

√
n = ∞.

Θεώρημα. Έστω οι ακολουθίες {an}, {bn} με limn→∞ an = A, , limn→∞ bn = B και οι A,B πραγματι-
κοί αριθμοί.

Όριο αθροίσματος: lim
n→∞

(an + bn) = A+B

Όριο σταθερού πολλαπλασίου: lim
n→∞

k an = kA

Όριο γινομένου: lim
n→∞

(an · bn) = A · B.
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Παράδειγμα.

(α) lim
n→∞

(
n− 1

n

)
= lim

n→∞

(
1− 1

n

)
= lim

n→∞
1− lim

n→∞

1

n
= 1− 0 = 1.

(β) lim
n→∞

(
4− 7n2

n2 + 3

)
= lim

n→∞

(
4/n2 − 7

1 + 3/n2

)
= lim

n→∞

0− 7

1 + 0
= −7.

Θεώρημα (Θεώρημα συνεχούς συνάρτησης για ακολουθίες). Έστω η ακολουθία {an}. Αν an → L

και αν η f είναι συνάρτηση συνεχής στο L και ορισμένη σε όλα τα an, τότε f(an) → f(L).

Παράδειγμα. Έστω η ακολουθία με an =
√

2n+1
n . Γνωρίζουμε ότι 2n+1

n = 2 + 1
n → 2. Θέτουμε

f(x) =
√
x και L = 1 και έχουμε √

2n+ 1

n
→

√
2.

4.1.2 Σειρές

Ορισμός (Σειρά). Μία σειρά είναι το άθροισμα μίας άπειρης ακολουθίας αριθμών,
a1 + a2 + a3 + . . .+ an + . . . .

Συχνά γράφουμε το άθροισμα των n πρώτων όρων της σειράς ως

sn = a1 + a2 + a3 + . . .+ an =
n∑

i=1

ai.

Παράδειγμα (Γεωμετρική σειρά). Ας δούμε την σειρά

1 + r + r2 + r3 + . . .+ rn−1 =
n∑

k=1

rk−1, r ∈ R.
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Μπορούμε να υπολογίσουμε το sn ως εξής

sn = 1 + r + r2 + r3 + . . .+ rn−1

rsn = r + r2 + r3 + r4 + . . .+ rn,

ώστε
sn − rsn = 1− rn ⇒ sn =

1− rn

1− r
, r ̸= 1. □

Για την άπειρη γεωμετρική σειρά, δηλαδή, όταν n → ∞, βλέπουμε ότι

• Αν |r| > 1, τότε limn→∞ rn → ∞ και η σειρά απειρίζεται, limn→∞ sn → ∞.

• Για |r| < 1, είναι limn→∞ rn = 0, άρα
∞∑
n=0

rn =
1

1− r
, |r| < 1.

Για μία σειρά a1, a2, . . . , an, . . ., αν έχουμε τον γενικό όρο an τότε μπορούμε να αναπαράγουμε όλους
τους όρους.

Παράδειγμα. Έστω an = {r2n}, όπου r ∈ R, τότε η σειρά είναι η

1 + r2 + r4 + r6 + . . .+ r2n + . . . . □

Θα πρέπει να είναι σαφές ότι μία σειρά μπορεί να συγκλίνει σε έναν αριθμό ή όχι, ή να αποκλίνει
στο άπειρο. Υπάρχουν κριτήρια τα οποία, σε πολλές περιπτώσεις, μας λένε αν μία σειρά συγκλίνει
ή αποκλίνει.
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Θεώρημα (Κριτήριο του λόγου). Έστω
∑

an μία σειρά και

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ.

• Αν ρ < 1, η σειρά συγκλίνει.

• Αν ρ > 1, η σειρά αποκλίνει.

• Αν ρ = 1, δεν μπορούμε να αποφανθούμε.

Θεώρημα. Έστω οι
∑

an = A,
∑

bn = B είναι συγκλίνουσε σειρές, τότε

Άθροισμα:
∑

(an + bn) = A+B

Σταθερό πολλαπλάσιο:
∑

k an = kA.

4.2 Δυναμοσειρές

Ορισμός. Δυναμοσειρά με κέντρο το x = 0 είναι μία σειρά της μορφής
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · ,

όπου οι c0, c1, c2, . . . είναι σταθερές.
Δυναμοσειρά με κέντρο το x = a είναι μία σειρά της μορφής

∞∑
k=0

ckx
k = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · .
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Παράδειγμα. Η γεωμετρική δυναμοσειρά είναι
∞∑
k=0

xk = 1 + x+ x2 + · · ·+ xn + · · · .

Συγκλίνει για |x| < 1 και είναι
1

1− x
= 1 + x+ x2 + · · ·+ xn + · · · , −1 < x < 1.

4.3 Σειρές Taylor και MacLauren

Ας θεωρήσουμε μία συνάρτηση της οποίας η έκφραση είναι

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + · · · ,

δηλαδή, δίνεται από μία δυναμοσειρά. Μπορούμε εύκολα να βρούμε τις παραγώγους της,

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
f ′′(x) = 2a2 + 3 · 2a3x+ · · ·+ n · (n− 1)anx

n−2 + · · ·
f ′′′(x) = 3 · 2a3 + 4 · 3 · 2a4x+ · · ·+ n · (n− 1) · (n− 2)anx

n−3 + · · · .

Μπορούμε να δούμε ότι η -οστή παράγωγος είναι

f (n)(x) = n! an + κάτι · x+ κάτι · x2 + · · · .

Παίρνουμε το x = 0 και βρίσκουμε

f(0) = a0, f ′(0) = a1, f ′′(0) = 2a2, f ′′′(0) = 3 · 2a3, · · · , f (n)(0) = n! an.
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Έτσι μπορούμε να γράψουμε όλους τους συντελεστές της δυναμοσειράς ως

an =
f (n)(0)

n!
.

Τώρα μπορούμε να γράψουμε την συνάρτηση f(x) ως

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .

Μπορούμε να επαναλάβουμε τα βήματα που είδαμε παραπάνω αν θέσουμε όπου x το x− a, όπου
a είναι μία σταθερά. Ξεκινάμε από την

f(x) =
∞∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · ·

και βρίσκουμε

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

Ορισμός (Σειρά Taylor και MacLauren). Έστω f συνάρτηση με παραγώγους όλων των τάξεων σε
κάθε σημείο ενός διαστήματος και a κάποιο εσωτερικό σημείο του διαστήματος αυτού. Τότε η σειρά
Taylor που παράγεται από την f στο x = a είναι

∞∑
k=0

f (k)(a)

k!
(x− a)k = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

Η σειρά MacLauren της f είναι η σειρά Taylor που παράγεται από την f στο x = 0,
∞∑
k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .
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Παράδειγμα. Ας βρούμε τη σειρά Taylor η οποία παράγεται από την

f(x) = ex.

Εφόσοον f (n)(x) = ex, είναι f (n)(0) = 1 για κάθε n ≥ 0. Ώστε η σειρά Taylor είναι

1 + x+
x

2
+

x2

3!
+ · · ·+ xn

n!
+ · · · .

Ορισμός (Πολυώνυμα Taylor). Έστω f συνάρτηση με παραγώγους τάξεως k σε κάποιο διάστημα
που περιέχει το a ως εσωτερικό σημείο. Τότε, για κάθε μη-αρνητικό ακέραιο n < k, το πολυώνυμο
Taylor τάξεως n που παράγεται από την f στο x = a είναι το

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Παράδειγμα. Το πολυώνυμο Taylor τάξης n το οποίο παράγεται από την f(x) = ex είναι

1 + x+
x

2
+

x2

3!
+ · · ·+ xn

n!
.

Ερώτηση. (α) Ποια είναι η γραμμική προσέγγιση της ex στο σημείο x = 0; (β) Σχεδιάστε την γραφική
παράσταση της ex και την γραμμική της προσέγγιση. (γ) Σχεδιάστε επίσης το πολυώνυμο P2(x) στο
x = 0. Τι παρατηρείτε;

Παράδειγμα. Ας βρούμε τη σειρά Taylor στο x = 0 η οποία παράγεται από την

f(x) = cosx.

Είναι

f(x) = cosx, f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, . . . ,

f (2n) = (−1)n cosx, f (2n+1) = (−1)n+1 sinx.
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Αφού cos 0 = 1, sin 0 = 0, η σειρά Taylor είναι

1− x2

2
+

x4

4!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · =

∞∑
k=0

(−1)mx2m

(2m)!
.

Ερώτηση. Τι βαθμού μπορεί να είναι ένα πολυώνυμο Taylor τάξης n;

Παράδειγμα. Ας βρούμε τη σειρά Taylor στο x = 0 η οποία παράγεται από την

f(x) = coshx.

Γράφουμε

coshx =
ex + e−x

2
και θα χρησιμοποιήσουμε το ανάπτυγμα Taylor της ex,

coshx =
1

2

( ∞∑
n=0

xn

n!
+

∞∑
n=0

(−1)nxn

n!

)
=

1

2

∞∑
n=0

1 + (−1)n

n!
xn =

∞∑
m=0

1

(2m)!
x2m = 1 +

x2

2
+

x4

24
+ . . . .

4.3.1 Σύγκλιση της σειράς Taylor

Θεώρημα (Τύπος του Taylor). Αν η f έχει παραγώγους όλων των τάξεων σε ένα ανοιχτό διάστημα
I που περιέχει το a, τότε για κάθε ακέραιο n > 0 και για κάθε x ∈ I ,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n +Rn(x)

όπου
Rn(x) =

f (n+1)(c)

(n+ 1)!
(x− a)n+1, για κάποιο c ∈ [a, x].
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Το παραπάνω μας λέει ότι ένα πολυώνυμο Taylor προσεγγίζει μία συνάρτηση f(x) και έχει ένα
συγκεκριμένο υπόλοιπο Rn. Η τιμή του υπολοίπου δεν είναι γνωστή στην γενική περίπτωση, όμως
σε πολλές περιπτώσεις, μπορούμε να υπολογίσουμε το υπόλοιπο και να γνωρίζουμε πόσο καλή
είναι η προσέγγισή μας.

Παρατήρηση 4.1. Αν Rn(x) → 0 καθώς n → ∞ για κάθε x ∈ I, λέμε ότι η σειρά Taylor συγκλίνει
στην f .

Διωνυμική σειρά. Έχουμε την σειρά Taylor

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + . . . .

Η σειρά αυτή ονομάζεται διωνυμική και συγκλίνει για |x| < 1. Για να την εξάγουμε, έχουμε
f ′(x) = m(1 + x)m−1, f ′′(x) = m(m− 1)xm−2, . . . .

Παίρνουμε τις τιμές της f και των παραγώγων στο x = 0,
f(0) = 1, f ′(0) = m, f ′′(0) = m(m− 1), , . . .

• Αν m είναι ακέραιος ≥ 0 τότε η σειρά τερματίζεται έπειτα από m+ 1 όρους.

• Αν το m δεν είναι θετικός ακέραιος τότε η σειρά είναι άπειρη και συγκλίνει για |x| < 1.
Παράδειγμα. Βρείτε την σειρά γύρω από το x = 0 για την συνάρτηση f(x) =

√
1 + x. Είναι

(1 + x)1/2 = 1 +
x

2
− x2

8
+

x3

16
− . . . .

Ορισμός (Διωνυμικοί συντελεστές). Για πραγματικούς αριθμούς p και ακεραίους k ≥ 1, ορίζουμε
τα σύμβολα (

m
k

)
=

m(m− 1)(m− 2) · · · (m− k + 1)

k!
,

(
m

0

)
= 1.
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Αυτοί είναι οι συντελεστές στην διωνυμική σειρά.

Ερώτηση. Αν μας δοθεί η συνάρτηση f(x) = (a + x)m, πώς θα μπορούσαμε να χρησιμοποιήσουμε
την σειρά Taylor της (1 + x)m και να βρούμε την σειρά Taylor της f(x);

4.3.2 Εφαρμογές

Γνωρίζουμε από μία άσκηση ότι

arctanx =
∞∑
0

(−1)n x2n+1

2n+ 1
.

Μπορούμε να βρούμε μία έκφραση για το π ως εξής

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− . . . .
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4.4 Σειρές Fourier

4.4.1 Περιοδικές συναρτήσεις

Θα δούμε συναρτήσεις f(x) οι οποίες είναι περιοδικές, δηλαδή ισχύει

f(x+ P ) = f(x) όπου P > 0 είναι η περίοδος.

Φυσικά παραδείγματα.

• Η θέση της Σελήνης ως προς την Γη είναι περιοδική συνάρτηση του χρόνου.
• Τα ηχητικά κύματα παράγονται από ταλαντώσεις (περιοδικές στον χρόνο κινήσεις) των φωνη-
τικών χορδών.

Παραδείγματα συναρτήσεων.

• Η sin x έχει περίοδο P = 2π. Μπορεί επίσης να θεωρηθεί ότι έχει περίοδο 4π και επίσης
6π, 8π, . . ., επειδή τα sin(x + 2π), sin(x + 4π), sin(x + 6π), . . . είναι όλα ίσα με sin x. Η ελάχιστη
περίοδος ή απλώς “περίοδος” είναι P = 2π.

• Η sin(nx), όπου n είναι ακέραιος, έχει περίοδο P = 2π/n.
• Μπορούμε να κατασκευάσουμε συνάρτηση ημιτόνου η οποία έχει περίοδο P . Είναι η sin

(
2πx
P

)
.

• Παρόμοια ισχύουν και για την cosx.

4.4.2 Ορισμός σειράς Fourier

Έστω f(x) ορισμένη στο διάστημα (−L,L) και έξω από το διάστημα ορίζεται με την σχέση f(x +
2L) = f(x), δηλαδή είναι περιοδική με περίοδο 2L. Θα ξεκινήσουμε θεωρώντας L = π, δηλαδή η
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περίοδος είναι 2π. Η σειρά Fourier, ή το ανάπτυγμα Fourier της f(x) ορίζεται ως

a0
2
+

∞∑
n=1

(an cos(nx) + bn sin(nx))

όπου οι συντελεστές Fourier είναι

an =
1

π

∫ π

−π

f(x) cos(nx) dx

bn =
1

π

∫ π

−π

f(x) sin(nx) dx.

Δείτε ότι
a0
2

=
1

2π

∫ π

−π

f(x) dx : μέση τιμή της συνάρτησης.

Οι συναρτήσεις sin(nx), για κάθε ακέραιο n, έχουν όλες περίοδο 2L (το ίδιο και οι cos(nx)). Άρα η
σειρά Fourier παριστάνει μία περιοδική συνάρτηση με περίοδο 2L.

Παρατήρηση 4.2. Σε πολλές περιπτώσεις αποδεικνύεται ότι η σειρά Fourier συγκλίνει στην πε-
ριοδική συνάρτηση f(x):

f(x) =
a0
2
+

∞∑
n=1

(an cos(nx) + bn sin(nx)) .

• Αν η f(x) είναι άρτια συνάρτηση, τότε βρίσκουμε bn = 0, άρα

f(x) =
a0
2
+

∞∑
n=1

an cos(nx).
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• Αν η f(x) είναι περιττή συνάρτηση, τότε βρίσκουμε an = 0, άρα

f(x) =
a0
2
+

∞∑
n=1

bn sin(nx).

Παράδειγμα. Ορίζουμε την f(x) = x στο διάστημα [−π, π] και την επεκτείνουμε περιοδικά στο R.
Είναι περιττή συνάρτηση, άρα an = 0. Είναι

bn =
1

π

∫ π

−π

x sin(nx) dx

Κάνουμε κατά παράγοντες ολοκλήρωση

bn =

[
− 1

nπ
x cos(nx)

]π
−π

+
1

nπ

∫ π

−π

cos(nx) dx = −2

n
cos(nπ) =

{
2
n n περιττός
− 2

n n άρτιος
.

Άρα
x = 2 sinx− sin(2x)

2

3
sin(3x)− 1

2
sin(4x) + 2

5
sin(5x)− . . . , −π ≤ x ≤ π. □

Για συνάρτηση με περίοδο 2L, η σειρά Fourier είναι

f(x) =
a0
2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
όπου οι συντελεστές Fourier είναι

an =
1

L

∫ L

−L

f(x) cos nπx
L

dx, bn =
1

L

∫ L

−L

f(x) sin nπx

L
dx.
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Παράδειγμα. ([5], κεφ. 2, άσκηση 2.11) Ας ορίσουμε την συνάρτηση f(x) = sinx, 0 < x < π την
οποία θεωροθμε περιοδική με περίοδο P = π (κάνετε γραφική παράσταση). Αυτή είναι μία άρτια
συνάρτηση, άρα μπορεί να αναπτυχθεί σε σειρά συνημιτόνων. Βρίσκουμε

an =
2

L

∫ L

0

f(x) cos nπx
L

dx =
2

π

∫ π

0

sinx cos(nx) dx = . . . =
−2(1 + cos(nπ)

π(n2 − 1)
, n ̸= 1.

Είναι

sinx =
2

π
− 2

π

∞∑
n=2

· · · = 2

π
− 4

π

(
cos 2x
22 − 1

+ · · ·
)
.
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