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2 ΚΕΦΑΛΑΙΟ 3. ΟΛΟΚΛΗΡΩΣΗ

3.1 Το αόριστο ολοκλήρωμα

Εάν υποθέσουμε ότι γνωρίζουμε τον ρυθμό μεταβολής f(x) μία συνάρτησης (την παράγωγό της),
θα ήταν μήπως δυνατόν να βρούμε ποια είναι η συνάρτηση αυτή, έστω F (x); (τότε θα είναι F ′ = f .)

Ορισμός. Μία συνάρτηση F (x) λέγεται αντιπαράγωγος (ή παράγουσα) της f(x) εάν

F ′(x) = f(x), ή dF

dx
= f(x).

Παράδειγμα. Αν γνωρίζουμε την επιτάχυνση ενός κινητού a(t) = dv/dt, θα μπορούσαμε να βρούμε
την ταχύτητά του v(t); Ως συγκεκριμένο παράδειγμα, ας υποθέσουμε ότι a = c είναι σταθερά, οπότε
θα έχουμε v(t) = ct.

Παρατήρηση 3.1. Το ερώτημα στην γενικότητά του, έχει ιδιαίτερα περίπλοκη απάντηση.

Παρατηρήστε ότι κάθε συνάρτηση της μορφής F (x) + c (όπου c είναι σταθερά), είναι επίσης παρά-
γουσα της f .

Ορισμός. Ονομάζουμε το ακόλουθο ∫
f(x)dx = F (x) + c

αόριστο ολοκλήρωμα. Είναι μία μονοπαραμετρική οικογένεια παραγουσών της f . Η f(x) λέγεται
ολοκληρωταία.

3.1.1 Ολοκληρώματα κάποιων βασικών συναρτήσεων

Για να βρούμε ένα αόριστο ολοκλήρωμα (ή μία αντιπαράγωγο) σκεφτόμαστε ως εξής: ποια συνάρτηση αν παραγωγιστή δίνει την f ;
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Την απάντηση για κάποιες περιπτώσεις παίρνουμε από τους πίνακες παραγώγισης στοιχειωδών
συναρτήσεων που ήδη έχουμε δει.
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Η βασική ιδιότητα του αορίστου ολοκληρώματος είναι η∫

[λf(x) + µg(x)] dx = λ

∫
f(x) dx+ µ

∫
g(x) dx, λ, µ ∈ R.

Παράδειγμα. Θα βρούμε το ολοκλήρωμα∫
(3x3 + 2− 5

√
x) dx.

Έχουμε άθροισμα ολοκληρωμάτων, ώστε∫
(3x3 + 2− 5

√
x) dx =

∫
3x3 dx+ 2

∫
dx− 5

∫ √
x dx = x2 + 2x− 10

3
x3/2.



4 ΚΕΦΑΛΑΙΟ 3. ΟΛΟΚΛΗΡΩΣΗ

Παράδειγμα. Θα βρούμε το ολοκλήρωμα ∫
sin(3x) dx.

Ξεκινάμε από την παρατήρηση ότι

d

dx
cos(3x) = −3 sin(3x)

άρα
d

dx

[
−1

3
cos(3x)

]
= sin(3x) ⇒

∫
sin(3x) dx = −1

3
cos(3x).

3.2 Το ορισμένο ολοκλήρωμα

3.2.1 Εμβαδό χωρίου

Παράδειγμα. Αν υποθέσουμε ότι ένα αυτοκίνητο τρέχει με σταθερή ταχύτητα v = c, τότε σε χρόνο t

έχει διανύσει απόσταση x = ct. Παρατηρήστε ότι αυτό ισούται με το εμβαδό κάτω από την γραφική
παράσταση v = v(t). Επίσης, το ct δίνεται από το ολοκλήρωμα

∫
v(t)dt (με κατάλληλη επιλογή της

σταθεράς στο ολοκλήρωμα).

Συνεχίζοντας το παράδειγμα, μπορούμε να υποθέσουμε ένα αυτοκίνητο το οποίο τρέχει με ταχύτητα
v = c1 για χρόνο 0 < t < t1 και ακολούθως τρέχει με v = c2 για χρόνο t1 < t < t2. Η θέση του στον
τελικό χρονο είναι x = c1t1+c2t2, κάτι που ισούται με τον εμβαδό κάτω από την γραφική παράσταση
v = v(t) (κάνετε σχήμα).
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Για κάθε συνάρτηση y = f(x) μπορούμε να βρούμε το εμβαδό κάτω από το γράφημα, παίρνοντας
διαδοχικά σημεία x0, x1, x2, . . . και αντίστοιχα y0, y1, y2, . . . και αθροίζοντας τα εμβαδά x0y0 + x1y1 +
x2y2 + . . ..

Ορισμός (Κανονική διαμέριση). Υποθέτουμε ένα διάστημα [a, b] και διαδοχικά σημεία x0, x1, . . . , xn

τέτοια ώστε x0 = a, xn = b και η απόσταση διαδοχικών σημείων είναι ∆x = b−a
n . Λέμε ότι έχουμε

μία κανονική διαμέριση του διαστήματος [a, b]. Δείτε ότι είναι

xk = a+ k∆x, k = 1, 2, . . . , n.

Ορισμός (Άθροισμα Riemann). Έστω f(x) η οποία ορίζεται σε διάστημα [a, b] και μία κανονική
διαμέριση του διαστήματος. Παίρνουμε ξ1, ξ2, . . . , ξn εντός των διαστημάτων [xk−1, xk] και θεωρούμε
το άθροισμα

n∑
k=1

f(ξk)∆x.
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Αυτό λέγεται άθροισμα Riemann. Δίνει προσέγγιση του εμβαδού του χωρίου κάτω από την γραφική
παράσταση της f(x) στο διάστημα [a, b].

Παρατήρηση 3.2. Αν μία συνάρτηση παίρνει θετικές και αρνητικές τιμές στο [a, b] τότε το άθροισμα
Riemann δίνει το καθαρό εμβαδό κάτω από το γράφημα, δηλαδή δίνει το εμβαδό στην περιοχή
που f(x) > 0 μείον το έμβαδό στην περιοχή όπου f(x) < 0.

Για να βρούμε το ακριβές εμβαδό πρέπει να πάρουμε

εμβαδό = lim
n→∞

n∑
k=1

f(ξk)∆x.

Ορισμός (Ορισμένο ολοκλήρωμα). Μία συνάρτηση f ορισμένη στο [a, b] είναι ολοκληρώσιμη εάν το
limn→∞

∑n
k=1 f(ξk)∆x υπάρχει για κάθε επιλογή των ξk. Αυτό λέγεται ορισμένο ολοκλήρωμα της f

από το a στο b και γράφεται ∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ξk)∆x.

Παράδειγμα (Χρήση γεωμετρίας). Θα υπολογίσουμε το ορισμένο ολοκλήρωμα∫ 4

2

(2x+ 3) dx

με γεωμετρικό υπολογισμό του εμβαδού κάτω από την γραφική παράσταση. Πρόκειται για το
εμβαδό τραπεζίου.

3.2.2 Ιδιότητες ορισμένων ολοκληρωμάτων

•
∫ b

a f(x) dx = −
∫ a

b f(x) dx.
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•
∫ a

a f(x) dx = 0.

•
∫ b

a [f(x) + g(x)] dx =
∫ b

a f(x) dx+
∫ b

a g(x) dx.

•
∫ b

a cf(x) dx = c
∫ b

a f(x) dx.

•
∫ b

a f(x) dx =
∫ p

a f(x) dx+
∫ b

p f(x) dx.

• Εάν f(x) ≤ g(x) στο [a, b], τότε
∫ b

a f(x) dx ≤
∫ b

a g(x) dx.

• Ανισότητα max-min. Αν maxf, minf είναι η μέγιστη και ελάχιστη τιμή της f στο [a, b], τότε

(minf)(b− a) ≤
∫ b

a

f(x) dx ≤ (maxf)(b− a).

Παράδειγμα. Έστω συνάρτηση f για την οποία γνωρίζουμε τα ορισμένα ολοκληρώματα
∫ 5

0 f(x) dx =

3 και
∫ 7

0 f(x) dx = 10 Μπορούμε να βρούμε ότι∫ 5

0

4f(x) dx = 4

∫ 5

0

f(x) dx = 12.

Επίσης ∫ 7

5

f(x) dx =

∫ 0

5

f(x) dx+

∫ 7

0

f(x) dx = −
∫ 5

0

f(x) dx+

∫ 7

0

f(x) dx = −3 + 10 = 7.

Παράδειγμα (max-min). Είναι 0 ≤ x2 ≤ x στο [0, 1], άρα

0 ≤
∫ 1

0

x2 dx ≤
∫ 1

0

x dx.
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Βρίσκουμε γεωμετρικά
∫ 1

0 x dx = 1/2, οπότε

0 <

∫ 1

0

x2 dx <
1

2
.

Θεώρημα (Ολοκληρωσιμότητα συνεχών συναρτήσεων). Αν μία συνάρτηση f είναι συνεχής σε διά-
στημα [a, b], ή αν η f έχει πεπερασμένες το πλήθος ασυνέχειες άλματος, τότε το ορισμένο ολοκλή-
ρωμα

∫ b

a f(x) dx υπάρχει και η f είναι ολοκληρώσιμη στο [a, b].

Ερώτηση. Βρείτε το ολοκλήρωμα της συνάρτηση βήματος στο διάστημα [−1, 1].

Ορισμός. Αν η f είναι ολοκληρώσιμη στο [a, b] τότε ορίζουμε την μέση τιμή της ως

av(f) = 1

b− a

∫ b

a

f(x) dx.

3.3 Θεμελιώδες θεώρημα απειροστικού λογισμού

Για μία ολοκληρώσιμη συνάρτηση f μπορούμε να ορίσουμε το ολοκλήρωμα από έναν σταθερό
αριθμό a σε έναν τυχόντα x,

F (x) =

∫ x

a

f(t) dt.

Εδώ έχουμε την μεταβλητή x να εμφανίζεται στο όριο του ολοκληρώματος. Η τιμή του ολοκληρώμα-
τος εξαρτάται από το x, δηλαδή, F = F (x). Η τιμή της F (x) δίνει το εμβαδό κάτω από το γράφημα
στο διάστημα [a, x] (θεωρούμε F > 0 και x > a).
Θα εξάγουμε ένα πολύ σημαντικό αποτέλεσμα αν υπολογίσουμε το F ′(x). Βλέπουμε ότι το (κάνετε
γράφημα)

F (x+ h)− F (x)
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δίνει το εμβαδό κάτω από το γράφημα της f στο διάστημα [x, x+ h]. Δηλαδή

F (x+ h)− F (x) ≈ hf(x).

Διαιρούμε με h και παίρνουμε
F (x+ h)− F (x)

h
≈ f(x).

Παίρνουμε το όριο h → 0 και βρίσκουμε

lim
h→0

F (x+ h)− F (x)

h
= f(x).

Θεώρημα. (Θεμελιώδες θεώρημα απειροστικού λογισμού - 1] Αν η f είναι συνεχής στο [a, b], τότε
η συνάρτηση F (x) =

∫ x

a f(t) dt είναι συνεχής στο [a, b] και διαφορίσιμη στο (a, b) και η παράγωγός
της είναι η f(x),

F ′(x) =
d

dx

∫ x

a

f(t) dt︸ ︷︷ ︸
F (x)

= f(x).

Παράδειγμα. Θα βρούμε την παράγωγο της

y =

∫ x

a

(t3 + 1) dt.

Είναι
dy

dx
= x3 + 1.

Παράδειγμα. Θα βρούμε την παράγωγο της

y =

∫ x2

1

cos t dt.
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Είναι y = y(u) όπου u = x2. Έχουμε
dy

dx
=

dy

du

du

dx
= cosu(2x) = 2x cosx2.

Θεώρημα. (Θεμελιώδες θεώρημα απειροστικού λογισμού - 2] Αν η f είναι συνεχής στο [a, b], και η
F μία αντιπαράγωγος της f στο [a, b], τότε∫ b

a

f(t) dt = F (b)− F (a).

Απόδειξη. Το προηγούμενο θεώρημα μας λέει ότι μία αντιπαράγωγος της f είναι η

G(x) =

∫ x

a

f(t) dt.

Ξέρουμε ότι μια οποιαδήποτε αντιπαράγωγος της f είναι η F (x) = G(x) + C. Παίρνουμε

F (b)− F (a) = [G(b) + C]− [G(a) + C] = G(b)−G(a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt =

∫ b

a

f(t) dt. □

Το θεώρημα μας λέει ότι για να υπολογίσουμε ένα ορισμένο ολοκλήρωμα πρέπει

• Να βρούμε μία αντιπαγάγωγο της f .

• Να υπολογίσουμε την ποσότητα F (b)− F (a).

[Δηλαδή, δεν χρειάζεται να υπολογίσουμε ποτέ αθροίσματα Riemann.]

Παράδειγμα. (α) Θα βρούμε το ορισμένο ολοκλήρωμα∫ π/2

0

cosx dx = [sinx]
π/2
0 = sin(π/2)− sin 0 = 1− 0 = 1.
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(β) Θα βρούμε το ορισμένο ολοκλήρωμα∫ π

0

cosx dx = [sinx]π0 = sin π − sin 0 = 0− 0 = 0.

Στα παραδείγματα, χρησιμοποιήσαμε τον συμβολισμό∫ b

a

f(t) dt = [F (x)]ba = F (b)− F (a).

Από τα παραπάνω θεωρήματα προκύπτει το εξής.

Θεώρημα (Θεώρημα ολικής μεταβολής). Η ολική μεταβολή μιας διαφορίσιμης συνάρτησης F (x) σε
ένα διάστημα [a, b] είναι το ολοκλήρωμα του ρυθμού μεταβολής της

F (b)− F (a) =

∫ b

a

F ′(x) dx.

Παράδειγμα. Αν ένα σώμα κινείται με ταχύτητα v(t) = ds/dt (όπου s(t) η θέση του) τότε∫ t2

t1

v(t) dt = s(t2)− s(t1)

δηλαδή, το ολοκλήρωμα της ταχύτητας είναι η μετατόπιση κατά το χρονικό διάστημα t1 ≤ t ≤ t2.

Παράδειγμα. Έστω c(x) το κόστος παραγωγής x τόνων χάλυβα. To μέσο κόστος παραγωγής επι-
πλέον h τόνων είναι

c(x+ h)− x(x)

h
.

Το οριακό κόστος παραγωγής ορίζεται ως

lim
h→0

c(x+ h)− x(x)

h
= c′(x).
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Βλέπουμε ότι το ορισμένο ολοκλήρωμα∫ x2

x1

c′(x) dx = c(x2)− c(x1)

δίνει το κόστος της παραγωγής από x1 σε x2 μονάδες.

Παράδειγμα. Θα βρούμε το εμβαδό του χωρίου που περικλείεται από τις γραφικές παραστάσεις
των x και x2 στο διάστημα [0, 1] (κάνετε σχήμα). Είναι∫ 1

0

(x− x2) dx =

∫ 1

0

x dx−
∫ 1

0

x2 dx =

[
x2

2
− x3

3

]1
0

=
1

2
− 1

3
=

1

6
.

Το θεμελιώδες θεώρημα του απειροστικού λογισμού μας λέει αρκετά πράγρατα.

• Αν ολοκληρώσουμε την f και έπειτα παραγωγίσουμε το αποτέλεσμα, παίρνουμε ξανά την f ,

d

dx

∫ x

a

f(t) dt = f(x).

• Αν παραγωγίσουμε την F και έπειτα ολοκληρώσουμε το αποτέλεσμα, παίρνουμε ξανά την F
(πιθανόν με μία σταθερά), ∫ x

a

F ′(t) dt = F (x)− F (a).

• Οι έννοιες παραγώγισης και ολοκλήρωσης είναι κατά κάποια έννοια αντίστροφες. Ας γράψουμε
σχηματικά

f(x)
∫

−→
∫ x

a

f(t)dt
d
dx−→ f(x).
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Παράδειγμα. Ας ξεκινήσουμε από την συνάρτηση f(x) = 2x. Γνωρίζουμε ότι η αντιπαράγωγος είναι
F (x) = x2 + c. Το θεώρημα-2 λέει ∫ x

0

2x dx = (x2 + c)− c = x2,

δηλαδή, το ολοκλήρωμα δίνει μία αντιπαράγωγο της f(x). Φυσικά, αν παραγωγίσουμε το αποτέλε-
σμα παίρνουμε πάλι την f(x),

(x2)′ = 2x.

3.4 Μέθοδοι ολοκλήρωσης

3.4.1 Μέθοδος αντικατάστασης

Έχουμε δει ότι το
∫
cos(2x)dx = 1

2 sin(2x) + C μπορέσαμε να το βρούμε αφού γνωρίζουμε ότι∫
cosxdx = sinx + C. Θα δούμε μια γενικότερη μέθοδο για να σχετίζουμε νέα (άγνωστα) ολοκλη-

ρώματα με τα βασικά που ήδη γνωρίζουμε.
Η μέθοδος βασίζεται στον κανόνα αλυσίδας για συνάρτηση F (u(x)),

d

dx
F (u(x)) =

dF

du

du

dx
= F ′(u)u′(x).

Άρα, είναι ∫
F ′(u)u′(x) dx = F (u) + C.

Για να δούμε την χρησιμότητα της παραπάνω σχέσης την γράφουμε ως (F ′ = f)∫
f(u) u′(x)dx︸ ︷︷ ︸

du

= F (u) + C =

∫
f(u)du.
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(Η τελευταία προκύπτει διότι η F είναι αντιπαράγωγος της f .)

Θεώρημα (Κανόνας αντικατάστασης για αόριστα ολοκληρώματα). Έστω u = u(x), τότε ισχύει η
ισότητα των ολοκληρωμάτων ∫

f(u)u′(x) dx =

∫
f(u)du.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα∫
2(2x+ 1)3 dx.

Θέτουμε u = 2x+ 1, έχουμε u′(x) = 2 και είναι∫
(2x+ 1)3︸ ︷︷ ︸

u3

2dx︸︷︷︸
du

=

∫
u3 du =

u4

4
+ C =

(2x+ 1)4

4
+ C.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα∫
2x cos(x2) dx.

Θέτουμε u = x2, έχουμε u′(x) = 2x και είναι∫
cos(x2)︸ ︷︷ ︸

u

2xdx︸ ︷︷ ︸
du

=

∫
cosu du = sinu+ C = sin(x2) + C.

Παράδειγμα. Θα υπολογίσουμε το ολοκλήρωμα

I =

∫
dx

(x− a)2
.
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Θέτουμε y = x− a, άρα dy = dx και το ολοκλήρωμα είναι

I =

∫
dy

y2
= −1

y
+ c =

1

a− x
+ c.

Παράδειγμα (Διαίρεση πολυωνύμου). Θα υπολογίσουμε το ολοκλήρωμα∫
x2 + 2x− 1

x+ 4
dx.

Βλέπουμε ότι x2 + 2x− 1 = (x+ 4)(x− 2) + 7, άρα το ολοκλήρωμα είναι∫
(x+ 4)(x− 2) + 7

x+ 4
dx =

∫
(x− 2) dx+

∫
7

x+ 4
dx =

x2

2
− 2x+ 7 ln |x+ 4|+ C.

Παράδειγμα. (*) Έστω η
f(x) =

1√
ax+ b

.

Θέλουμε F τέτοια ώστε dF
dx = f . Μπορούμε να θέσουμε y = ax + b. Βλέπουμε ότι μπορούμε να

γράψουμε το πρόβλημα ως εξής
dF

dx
=

1
√
y
⇒ dF

dy

dy

dx
=

1
√
y
⇒ dF

dy
=

1
√
y

dx

dy
⇒ dF

dy
=

1
√
y

1

a
⇒ F =

2

a

√
y.

Το αποτέλεσμα είναι
F (x) =

2

a

√
ax+ b.

3.4.2 Μερικά κλάσματα

Παράδειγμα. Εστω το ολοκλήρωμα

I =

∫
x dx

(x+ 1)(x+ 2)
.
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Γνωρίζουμε ότι μπορούμε να γράψουμε την ολοκληρωταία ως άθροισμα μερικών κλασμάτων
x

(x+ 1)(x+ 2)
= − 1

x+ 1
+

2

x+ 2
.

Ώστε
I −

∫
dx

x+ 1
+ 2

∫
dx

x+ 2
= − ln |x+ 1|+ 2 ln |x+ 2|+ c.

3.4.3 Τριγωνομετρικά ολοκληρώματα

Παράδειγμα. Για το
I =

∫
sin2 x dx

χρησιμοποιούμε την ταυτότητα sin2 x = 1
2(1− cos(2x)) και έχουμε

I =
1

2

∫
(1− cos(2x)) dx =

x

2
− 1

4
sin(2x) + c.

Παράδειγμα. Για το
I =

∫
cos5 x dx

κάνουμε την αντικατάσταση u = sinx και γράφουμε

I =

∫
cos4 x cosx dx =

∫
(1− u2)2du = . . . = u− 2

3
u3 +

u5

5
+ c = sinx− 2

3
sin3 x+

sin5 x

5
+ c.

Παράδειγμα. Ας δούμε το∫
tanx dx =

∫ sinx

cosx dx = −
∫

du

u
= − ln | sinx|+ c, u = cosx.
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3.4.4 Τριγωνομετρικές αντικαταστάσεις

Κάποια ολοκληρώματα υπολογίζονται με τριγωνομετρικές αντικαταστάσεις. Ας δούμε το

I =

∫
dx√

x2 + a2
, x = a sinh y, a > 0.

Είναι dx = a cosh y dy και

I =

∫
a cosh y dy√
a2 cosh2 y + a2

= . . .

∫
dy = y + c = arcsinh

(x
a

)
+ c.

Δοκιμάστε να υπολογίσετε τα

I =

∫
dx√

x2 − a2
, x = a cosh y

I =

∫
dx√

a2 − x2
, x = a sin y.

3.4.5 Κατά παράγοντες ολοκλήρωση

Η ολοκλήρωση κατά παράγοντες είναι μία τεχνική απλούστευσης ολοκληρωμάτων της μορφής∫
u(x)v′(x) dx.

Για να την εφαρμόσουμε παρατηρούμε ότι

d

dx
[u(x)v(x)] = u′(x)v(x) + u(x)v′(x).
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Παίρνουμε αόριστα ολοκληρώματα και στα δύο μέλη∫
d

dx
[u(x)v(x)] dx =

∫
u′(x)v(x) dx+

∫
u(x)v′(x) dx∫

u(x)v′(x) dx = u(x)v(x)−
∫

u′(x)v(x) dx.

Παράδειγμα. Στο ολοκλήρωμα
I =

∫
x cosx dx

μπορούμε να θέσουμε u(x) = x και v′(x) = cosx ⇒ v(x) = sinx. Ώστε είναι

I = u(x)v(x)−
∫

u′(x)v(x) dx = x sinx−
∫

sinx dx = x sinx+ cosx+ c.

Παρατήρηση 3.3. Σκοπός της παραγοντικής ολοκλήρωσης είναι να περάσουμε από ένα ολοκλή-
ρωμα που δεν γνωρίζουμε,

∫
uv′ dx σε ένα άλλο που γνωρίζουμε,

∫
u′v dx.

Παράδειγμα. Στο ολοκλήρωμα
I =

∫
x2ex dx

θέτουμε u(x) = x2 και v′(x) = ex ⇒ v(x) = ex. Ώστε είναι

I = u(x)v(x)−
∫

u′(x)v(x) dx = x2ex −
∫

2xex dx.

Δεν ξέρουμε το νέο ολοκλήρωμα που προέκυψε, αλλά μπορούμε να κάνουμε πάλι κατά παράγοντες
ολοκλήρωση. Θέτουμε u(x) = 2x και v′(x) = ex ⇒ v(x) = ex∫

2xex dx = 2xex −
∫

2ex dx = 2xex − 2ex + C.

Το αποτέλεσμα είναι
I = x2ex − 2xex + 2ex + C.
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3.4.6 Αριθμητική ολοκλήρωση: Μέθοδος Monte Carlo

3.5 Εφαρμογές

3.5.1 Μάζα κατανομής πυκνότητας

Μπορούμε να βρούμε την μάζα σώματος ως

μάζα = πυκνότητα · όγκος.

Αν έχουμε πολλά σωματα με διαφορερικές πυκνότητες ρk και όγκους Vk τότε η συνολική μάζα είναι

m =
∑
k

ρkVk.

Παράδειγμα (Μάζα γραμμικής κατανομής πυκνότητας). Θεωρούμε μικρά ραβδωτά κομματάκια
καθένα με μήκος ∆x και αντίστοιχες γραμμικές πυκνότητες ρk. Η συνολική μάζα είναι

m =
∑
k

ρk∆x.

Τα τοποθετούμε το ένα δίπλα στο άλλο και έχουμε μία ράβδο από x = 0 έως x = L. Γράφουμε την
πυκνότητα της ράβδου ως ρ(x) (δεν είναι ίδια παντού). Αν θεωρήσουμε απειροστά μικρά κομμάτια
ράβδου μήκους dx, η μάζα του καθενός είναι dm = ρ(x)dx. Η συνολική μάζα της ράβδου είναι

m =

∫ L

0

ρ(x)dx.

Έστω κατανομή μάζας ρ(x) = 1 + x2 για ράβδο στο διάστημα 0 < x < 2. Η μάζα της είναι

m =

∫ 2

0

(1 + x2)dx =

[
x+

x3

3

]2
0

=
14

3
.
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3.5.2 Έργο δύναμης

Το έργο που παράγεται από δύναμη F η οποία δρα σε διάστημα ∆x είναι W = F∆x. Αν η δύναμη
είναι διαφορετική σε διαφορετικές θέσεις xi τότε το έργο είναι W =

∑
i f(xi)∆x. Για δύναμη F (x),

το έργο που παράγει όταν μετατοπίζει αντικείμενο από θέση x = a σε x = b (στην κατεύθυνση της
δύναμης), το έργο δίνεται από το ολοκλήρωμα

W =

∫ b

a

F (x)dx.

Παράδειγμα (Συμπίεση ελατηρίου). Η δύναμη ελατηρίου είναι F = kx και το έργο που παράγει
(έστω ότι η μάζα βρίσκεται αρχικά στην θέση ισοροοπίας)

W =

∫ a

0

kxdx = k
x2

2

∣∣∣a
0
=

ka2

2
.

Παράδειγμα (Προβλήματα ανύψωσης). [2], Κεφ. 6.7, παράδειγμα 2

3.5.3 Μήκος καμπυλών

Θεωρούμε μία καμπύλη με εξίσωση y = f(x), a ≤ x ≤ b (κάνετε σχήμα). Ας χωρίσουμε τον άξονα
x σε κομμάτια μήκους ∆x. Το μήκος ενός κομματιού της καμπύλης που αντιστοιχεί στο ∆x είναι
(από το Πυθαγόρειο θεώρημα)√

(∆x)2 + (∆yk)2, ∆yk = f(xk +∆x)− f(xk).

Το συνολικό μήκος L της καμπύλης είναι

L =
n∑

k=1

√
(∆x)2 + (∆yk)2 =

n∑
k=1

√√√√(∆x)2

(
1 +

(
∆yk
∆x

)2
)

=
n∑

k=1

√
1 +

(
∆yk
∆x

)2

∆x.
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Το εκριβές της καμπύλης βρίσκεται αν πάρουμε ∆x → dx (απειροστά διαστήματα) και ολοκληρώ-
σουμε

L =

∫ b

a

√
1 + f ′(x)2 dx.

Παράδειγμα. Ας βρούμε το μήκος της καμπύλης f(x) = x3/2 στο διάστημα 0 ≤ x ≤ 4. Είναι
f ′(x) = 3

2x
1/2 και

L =

∫ 4

0

√
1 +

9

4
x dx =

4

9

∫ 10

1

√
u du =

8

27
u3/2

∣∣10
1

= . . . .

3.5.4 Όγκος στερεού από περιστροφή

Εάν περιστρέψουμε καμπύλη y = f(x) γύρω από τον άξονα των x, δημιουργείται ένα σχήμα που
ονομάζεται στερεό από περιστροφή. Ο όγκος του V υπολογίζεται χωρίζοντάς το σε λεπτούς δίσκους
πάχους ∆x κάθετους στον άξονα των x. Για το υποδιάστημα [xk−1, xk], ο αντίστοιχος δίσκος έχει
όγκο

π(f(ξk))
2∆x, ξk ∈ [xk−1, xk].

Ο συνολικός όγκος είναι

V = lim
n→∞

n∑
k=1

π(f(ξk))
2∆x = π

∫ b

a

(f(x))2dx.

Παράδειγμα. Μία σφαίρα μπορεί να θεωρηθεί ως στερεό από περιστροφή της καμπύλης y =√
R2 − x2, x ∈ [−R,R]. Ο ογκος είναι

V = π

∫ R

−R

(R2 − x2) dx = . . . =
4

3
πR3.

Ερώτηση. Υπολογίστε τον όγκο κυλίνδρου ακτίνας R και ύψους h.
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3.5.5 Εμβαδό επιφάνειας

Σκεφτείτε πώς μπορείτε να χρησιμοποιήσετε τις ιδέες των προηγουμένων εφαρμογών ολοκληρωμά-
των ώστε να υπολογίσετε το εμβαδό επιφανειών από περιστροφή (δείτε [2], κεφ. 6.6 ή αντίστοιχο
στο [1]).
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