

Z54 Διδακτική της Γεωμετρίας

Παρατηρήσεις

- Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε.
Οι απαντήσεις πρέπει να είναι σαφείς, σύντομες και αιτιολογημένες.
- Πρέπει να απαντήσετε τα θέματα Α και Β. Μπορείτε να απαντήσετε μέχρι δύο από τα θέματα Γ, Δ, Ε, Ζ.
Οι βαθμοί κάθε θέματος δίδονται σε παρένθεση. Ο μέγιστος βαθμός είναι 100.
- Όπου χρειάζεται, σχεδιάστε ένα πρόχειρο αλλά έγκυρο διάγραμμα με μολύβι. Πρόχειρο σημαίνει ότι δεν είναι απαραίτητο να χρησιμοποιήσετε κανόνα και διαβήτη, ούτε να παραστήσετε τα μήκη και τις γωνίες με μεγάλη ακρίβεια. Έγκυρο σημαίνει ότι πρέπει να τηρούνται οι σχέσεις σύμπτωσης και διάταξης μεταξύ σημείων, ευθειών και κύκλων.

Πρέπει να απαντήσετε τα θέματα Α και Β.

ΘΕΜΑ Α. (25)

[...]

ΘΕΜΑ Β. (25)

[...]

Μπορείτε να απαντήσετε σε δύο από τα θέματα Γ, Δ, Ε, Ζ.

ΘΕΜΑ Γ. (25)

Διαβάστε τα αποσπάσματα από το άρθρο Interactions with Diagrams and the Making of Reasoned Conjectures in Geometry του Patricio Herbst, και απαντήστε στις ακόλουθες ερωτήσεις.

α'. Γιατί θεωρείται χρήσιμη η ενασχόληση των μαθητριών και των μαθητών με προβλήματα Γεωμετρίας στα οποία διατυπώνουν εικασίες;

β'. Διατυπώστε το “θεώρημα” το οποίο παρουσιάζει το συγκεκριμένο απόσπασμα του άρθρου, και δώστε απόδειξη, με κατάλληλο διάγραμμα, όπως αυτή θα παρουσιαζόταν σε ένα συμβατικό μάθημα στην 1η Λυκείου.

γ'. Περιγράψτε το πρόβλημα όπως τέθηκε στην τάξη της Megan. Ποιά ήταν η αναμενόμενη από τον ερευνητή πορεία της εργασίας, και τι επιπλέον στοιχεία πρέχουφαν κατά την εφαρμογή;

δ'. Τι δυσκολίες αντιμετωπίζουν ο μαθητής Mitchell και η καθηγήτρια Megan στη διαχείριση αυτού του προβλήματος;

Patricia Herbst. Interactions with Diagrams and the Making of Reasoned Conjectures in Geometry. ZDM 2004 Vol. 36 (5).

Various studies on geometry instruction (Arzarello et al. 1998; Mariotti et al. 1997) suggest that students' meaningful construction of knowledge – and in particular their investment of mathematical reasoning and proving in such construction – is possible in the context of tasks that enable learners to act and modify their environments.

The notion that authentic mathematical activity involves more than merely the clear communication and logical sorting of obvious statements has prompted efforts to involve geometry students in conjecturing and problem solving (Hadas, Herschkovitz, and Schwartz 2000). Activities building on an empirical mode of interaction between students and diagrams have brought students closer to being able to make conjectures, yet not necessarily to having authentic experiences with the production of knowledge. [...]

I call generative a mode of interaction between actor, object, and diagram in which an initial, hypothetical identification between object and diagram gives the conditions and constraints for the actor to carry out operations on the diagram and consider their results, which ascribe new properties to the object.[...] The possibility of establishing a generative mode of interaction between students and diagrams seems to be part of what is required to support students making of reasoned conjectures.

The following episode exemplifies what it could take to set up a generative interaction between students and diagrams, and also offers a view onto the opportunities and challenges that such an interaction presents to a teacher. It refers to the theorem that a circle tangent to two intersecting lines has its center on the bisector of the angle formed by the two lines, and has its points of tangency equidistant

from the intersection of the two lines. What would it take to engage students in the conjecturing and proving of that theorem?

In collaboration with teacher Megan Keating we designed a lesson that was meant to engage students in formulating that tangent theorem as a way of finding out the conditions in which a problem could be solved. Students were to be given the problem stated in the Figure, and provided with a diagram like the one in the figure, and asked to draw a circle centered on point P and tangent to both lines. A week later the problem would be used in the room of another geometry teacher, Lucille Vance.

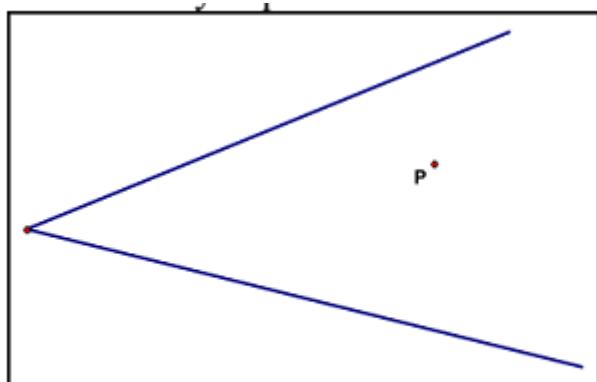


Figure 10. To draw a circle tangent to two intersecting lines

Our analysis a priori of this task included the expectation that students would arrive at the theorem through establishing conditions for the problem to be solved. To arrive at that situation from the given problem we expected, for example, that students might try and fit a circle in the angle and realize that it could not be done for the point given, identifying as a difficulty the fact that the purported center was not equidistant from the two legs of the angle. We expected that this would allow the teacher to engage students in rewriting the task, asking, for example, what would you have to say about P to ensure that it would be equidistant from the two legs? or in providing directions for a diagram that would permit the construction. We thus expected that the discourse could foreground the connections between on the one hand the need for the center of the circle to be equidistant from the legs, made apparent by the choice of an initial point that did not have such property, and on the other hand the characteristics of a figure for which such point was equidistant from the legs.

Τη δεύτερη φορά που διδάσκει το ίδιο πρόβλημα η Megan εξηγεί από την αρχή στην τάξη οτι μπορούν να μετακινήσουν το σημείο P . Την επόμενη εβδομάδα, η Lucille δεν δίνει το διάγραμμα, αλλά ζητάει από τις μαθήτριες και τους μαθητές να σχεδιάσουν δύο

τεμνόμενες ευθείες, να επιλέξουν σημείο P για κέντρο και να σχεδιάσουν τον κύκλο που εφάπτεται στις δύο ευθείες.

When students are given a task they are given it in the context of an instructional situation. “Doing proofs” is one such instructional situation; doing constructions problems on given diagrams is another one; making conjectures based on empirical interactions, yet another. Whereas all of those rely on students’ interactions with diagrams, none of them customarily engages students in the kind of generative interaction called forth by this circle problem, in which students had to make the choice of imposing conditions on the given point to make the problem solvable at the expense of admitting that the given problem could not be solved in general.

(Η απάντηση να μην ξεπερνάει τις 400 λέξεις.)

ΘΕΜΑ Δ. (20)

Το Τέταρτο Κριτήριο Ισότητας Τριγώνων (μία πλευρά, μία προσκείμενη γωνία και η απέναντι γωνία ίσες μία προς μία), είναι άμεση συνέπεια του σταθερού ανθροίσματος των γωνιών τριγώνου στην Ευκλείδεια Γεωμετρία. Όμως αυτό το κριτήριο ισχύει και χωρίς την υπόθεση του αιτήματος των παραλλήλων.

Δώστε μία απόδειξη του Τέταρτου Κριτηρίου Ισότητας Τριγώνων χρησιμοποιώντας μόνον ιδιότητες τριγώνων που προκύπτουν από τα αξιώματα Hilbert των ομάδων I, II και IV.

ΘΕΜΑ Ε. (30)

[...]

ΘΕΜΑ Ζ. (25)

[...]

Καλή Επιτυχία!